Characterization of Cyclofructans from Inulin by Saccharomyces cerevisiae Strain Displaying Cell-Surface Cycloinulooligosaccharide Fructanotransferase

  • Kim, Hyun-Jin (Department of Biomaterial Control(BK21 Program), Dong-Eui University) ;
  • Lee, Jae-Hyung (Department of Biomaterial Control(BK21 Program), Dong-Eui University) ;
  • Kim, Hyun-Chul (Bioneer Corp.) ;
  • Lee, Jin-Woo (Department of Biotechnology, Dong-A University) ;
  • Kim, Yeon-Hee (Department of Biotechnology, Osaka University) ;
  • Nam, Soo-Wan (Department of Biomaterial Control(BK21 Program), Dong-Eui University)
  • Published : 2007.04.30

Abstract

The cycloinulooligosaccharide fructanotransferase (CFTase) gene (cft) from Paenibacillus macerans (GenBank access code AF222787) was expressed on the cell surface of Saccharomyces cerevisiae by fusing with Aga2p linked to the membrane-anchored protein Aga1p. The surface display of CFTase was confirmed by immunofluorescence microscopy and enzymatic assay. The optimized reaction conditions of surface-displayed CFTase were as follows; pH, 8.0; temperature, $50^{\circ}C$; enzyme amount, 30 milliunit; substrate concentration, 5%; inulin source, Jerusalem artichoke. As a result of the reaction with inulin, cycloinulohexaose was produced as a major product along with cycloinuloheptaose and cycloinulooctaose as minor products.

Keywords

References

  1. Boder, E. T. and K. D. Wittrup. 1997. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15: 553-557 https://doi.org/10.1038/nbt0697-553
  2. Cappellaro, C., R. R. Baldermann, and W. Tanner. 1994. Mating type-specific cell-cell recoginition of Saccharomyces cerevisiae: Cell wall attachment and active sites of a- and $\alpha$-agglutinin. EMBO J. 13: 4737-4744
  3. Chiswell, D. J. and J. McCafferty. 1992. Phage antibodies: Will new 'coliclonal' antibodies replace monoclonal antibodies? Trends Biotechnol. 10: 80-84 https://doi.org/10.1016/0167-7799(92)90178-X
  4. Cho, B. K., M. C. Kieke, E. T. Boder, K. D. Wittrup, and D. M. Kranz. 1998. A yeast surface display system for the discovery of ligands that trigger cell activation. J. Immunol. Methods 220: 179-188 https://doi.org/10.1016/S0022-1759(98)00158-6
  5. Choi, J. H., J. I. Choi, and S. Y. Lee. 2005. Display of proteins on the surface of Escherichia coli by C-terminal deletion fusion to the Salmonella typhimurium OmpC. J. Microbiol. Biotechnol. 15: 141-146
  6. Cochran, J. R., Y. S. Kim, M. J. Olsen, R. Bhandari, and K. D. Wittrup. 2004. Domain-antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments. J. Immunol. Methods 287: 147-158 https://doi.org/10.1016/j.jim.2004.01.024
  7. Ezaki, S., M. Tsukio, M. Takagi, and T. Imanaka. 1998. Display of heterologous gene products on the Escherichia coli cell surface as fusion proteins with flagellin. J. Ferment. Bioeng. 86: 500-503 https://doi.org/10.1016/S0922-338X(98)80159-1
  8. Ito, H. Y., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163-168
  9. Jeon, S. J., D. J. You, H. J. Kwon, S. Kanaya, N. Kunihiro, K. H. Kim, Y. H. Kim, and B. W. Kim. 2002. Cloning and characterization of cycloinulooligosacchride fructano-transferase (CFTase) from Bacillus polymyxa MGL21. J. Microbiol. Biotechnol. 12: 921-928
  10. Kanai, T., N. Ueki, T. Kawaguch, Y. Teranishi, H. Atomi, C. Tomorbaatar, M. Ueda, and A. Tanaka. 1997. Recombinant thermostable cycloinulooligosaccharide fructano-transferase produced by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 63: 4956-4960
  11. Kawamura, M., T. Uchiyama, T. Kuramoto, Y. Tamura, and K. Mizutani. 1989. Formation of a cycloinulooligosaccharide from inulin by an extracellular enzyme of Bacillus circulans OKUMZ31B. Carbohydr. Res. 192: 83-90 https://doi.org/10.1016/0008-6215(89)85167-5
  12. Kim, D. H., Y. J. Choi, S. K. Song, and J. W. Yun. 1997. Production of inulo-oligosaccharides using endo-inulinase from Pseudomonas sp. Biotechnol. Lett. 19: 369-371 https://doi.org/10.1023/A:1018311219788
  13. Kim, H. C., H. J. Kim, W. B. Choi, and S. W. Nam. 2006. Inulooligosaccharide production from inulin by Saccharomyces cerevisiae strain displaying cell-surface endoinulinase. J. Microbiol. Biotechnol. 16: 360-367
  14. Kim, H. C., J. H. Jeong, S. J. Jeon, W. B. Choi, and S. W. Nam. 2005. Expression of Paenibacillus macerans cycloinulooligosaccharide fructanotransferase in Saccharomyces cerevisiae. J. Life Sci. 15: 317-322 https://doi.org/10.5352/JLS.2005.15.3.317
  15. Kim, H. Y. and Y. J. Choi. 2001. Molecular characterization of cyclo-inulooligosaccharide fructanotransferase from Bacillus macerans. Appl. Environ. Microbiol. 67: 995-1000 https://doi.org/10.1128/AEM.67.2.995-1000.2001
  16. Kim, H. Y and Y. J. Choi. 1998. Purification and characterization of cyclo-inulooligosaccharide fructanotransferase from Bacillus macerans CFC1. J. Microbiol. Biotechnol. 8: 251-257
  17. Kim, J. J., S. W. Kim, C. O. Jeon, J. Y Yun, H. S. Lee, and H. S. Ro. 2006. Screening of yeast diauxic promoters for production of foreign proteins. J. Microbiol. Biotechnol. 16: 1459-1463
  18. Kim, Y. H., S. W. Nam, and B. H. Chung. 1998. Simultaneous saccharification of inulin and ethanol fermentation by recombinant Saccharomyces cerevisiae secreting inulinase. Biotechnol. Bioproc. Eng. 3: 55-60 https://doi.org/10.1007/BF02932502
  19. Kobori, H., M. Sato, and M. Osumi. 1992. Relationship of actin organization to growth in the two forms of the dimorphic yeast Candida tropicalis. Protoplasma 167: 193-204 https://doi.org/10.1007/BF01403383
  20. Kongruang, S., M. J. Han, C. I. Breton, and M. H. Penner. 2004. Quantitative analysis of cellulose-reducing ends. Appl. Biochem. Biotechnol. 113: 213-231 https://doi.org/10.1385/ABAB:113:1-3:213
  21. Lipke, P. N. and J. Kurjan. 1992. Sexual agglutination in budding yeasts: Structure, function, and regulation of adhesion glycoproteins. Microbiol. Rev. 56: 180-194
  22. Murai, T., M. Ueda, H. Atomi, Y. Shibasaki, N. Kamasawa, M. Osumi, T. Imanaka, and A. Tanaka. 1999. Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl. Microbiol. Biotechnol. 51: 65-70 https://doi.org/10.1007/s002530051364
  23. Murai, T., M. Ueda, H. Atomi, Y. Shibasaki, N. Kamasawa, M. Osumi, T. Kawaguichi, M. Arai, and A. Tanaka. 1997. Genetic immobilization of cellulase on the cell surface of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 48: 499-503 https://doi.org/10.1007/s002530051086
  24. Ohta, K., S. Hamada, and T. Nakamura. 1993. Production of high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 59: 729-733
  25. Sawada, M., T. Tanaka, Y. Takai, T. Hanafrsa, T. Taniguchi, M. Kawamura, and T. Uchiyama. 1991. The crystal structure of cycloinulohexaose produced from inulin by cycloinulooligosaccharide fructanotransferase. Carbohydr. Res. 217: 7-17 https://doi.org/10.1016/0008-6215(91)84112-R
  26. Schreuder, M. P., S. Brekelmans, H. van den Ende, and F. M. Klis. 1993. Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast 9: 399-409 https://doi.org/10.1002/yea.320090410
  27. Uchiyama, T., M. Kawamura, T. Uragami, and H. Okuno. 1993. Complexing of cycloinulo-oligosaccharides with metal ions. Carbohydr. Res. 241: 245-248 https://doi.org/10.1016/0008-6215(93)80111-Q
  28. Vandamme, E. J. and D. G Derycke. 1983. Microbial inulinase: Fermentation process, properties, and applications. Adv. Appl. Microbiol. 29: 139-176 https://doi.org/10.1016/S0065-2164(08)70356-3
  29. Yasuya, F., K. Satoshi, M. Ueda, A. Tanaka, J. Okada, Y. Morikawa, H. Fukuda, and A. Kondo. 2002. Construction of whole-cell biocatalyst for xylan degradation through cell-surface xylanase display in Saccharomyces cerevisiae. J. Mol. Catal. B: Enzym. 17: 189-195 https://doi.org/10.1016/S1381-1177(02)00027-9