Stress-Governed Expression and Purification of Human Type II Hexokinase in Escherichia coli

  • Jeong, Eun-Ju (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Kyoung-Sook (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yi, So-Yeon (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kang, Hyo-Jin (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Chung, Sang-J. (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Chang-Soo (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Chung, Jin-Woong (Laboratory of Immunology, Korea Research Institute of Bioscience and Biotechnology) ;
  • Seol, Dai-Wu (Department of Surgery, University of Pittsburgh School of Medicine) ;
  • Chung, Bong-Hyun (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Moon-Il (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • 발행 : 2007.04.30

초록

The full encoding sequence for human type II hexokinase (HXK II) was cloned into the E. coli expression vector pET 21b and expressed as a C-terminally hexahistidine-tagged protein in the BL2l (DE3) strain. The IPTG-induced HXK II approximately accounted for 17% of the total E. coli proteins, and 81% of HXK $II_{6{\times}His}$ existed in inclusion bodies. To improve the production of soluble recombinant HXK II protein, in the functionally active form, we used low temperature, and the osmotic stress expression method. When expressed at $18^{\circ}C$, about 83% of HXK $II_{6{\times}His}$ existed in the soluble fraction, which amounted to a 4.1-fold yield over that expressed at $37^{\circ}C$. The soluble form of HXK $II_{6{\times}His}$ was also highly produced in the presence of 1M sorbitol under the standard condition $(37^{\circ}C)$, which indicated that temperature downshift and low water potentials were required to improve the yield of active recombinant HXK II protein. The expressed protein was purified by metal chelate affinity chromatography performed in an IDA Excellose column charged with $Ni^{2+}$ ions, resulting in about 40mg recombinant HXK II protein obtained with purity over 89% from 51 of E. coli culture. The identity of HXK $II_{6{\times}His}$ was confirmed by Western blotting analysis. Taken together, using the stress-governed expression described in this study, human active HXK II can be purified in sufficient amounts for biochemical and biomedical studies.

키워드

참고문헌

  1. Arora, K. K., C. R. Filburn, and P. L. Pedersen. 1993. Structure/function relationships in hexokinase. Site-directed mutational analyses and characterization of overexpressed fragments implicate different functions for the N- and C-terminal halves of the enzyme. J. Biol. Chem. 268: 18259-18266
  2. Birnbaum, M. J. 2004. On the InterAktion between hexokinase and the mitochondrion. Dev. Cell 7: 781-782 https://doi.org/10.1016/j.devcel.2004.11.016
  3. Downward, J. 2003. Role of receptor tyrosine kinases in G-protein-coupled receptor regulation of Ras: Transactivation or parallel pathways? Biochem. J. 376: e9-10 https://doi.org/10.1042/BJ20031745
  4. Grossbard, L. and R. T. Schimke. 1966. Multiple hexokinases of rat tissues. Purification and comparison of soluble forms. J Biol. Chem. 241: 3546-3560
  5. Jurgensmeier, J. M., Z. Xie, Q. Deveraux, L. Ellerby, D. Bredesen, and J. C. Reed. 1998. Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci. USA 95: 4997-5002 https://doi.org/10.1073/pnas.95.9.4997
  6. Katzen, H. M. and R. T. Schimke. 1965. Multiple forms of hexokinase in the rat: Tissue distribution, age dependency, and properties. Proc. Natl. Acad. Sci. USA 54: 1218-1225 https://doi.org/10.1073/pnas.54.4.1218
  7. Kim, J. H., D. H. Kim, M. R. Kim, H. J. Kwon, T. K. Oh, and C. H. Lee. 2005. Gentisyl alcohol inhibits apoptosis by suppressing caspase activity induced by etoposide. J. Microbiol. Biotechnol. 15: 532-536
  8. Kim, M., S. Y. Park, H. S. Pai, T. H. Kim, T. R. Billiar, and D. W. Seol. 2004. Hypoxia inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by blocking Bax translocation. Cancer Res. 64: 4078-4081 https://doi.org/10.1158/0008-5472.CAN-04-0284
  9. Majewski, N., V. Nogueira, P. Bhaskar, P. E. Coy, J. E. Skeen, K. Gottlob, N. S. Chandel, C. B. Thompson, R. B. Robey, and N. Hay. 2004. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol. Cell 16: 819-830 https://doi.org/10.1016/j.molcel.2004.11.014
  10. Manon, S., B. Chaudhuri, and M. Guerin. 1997. Release of cytochrome c and decrease of cytochrome c oxidase in Bax-expressing yeast cells, and prevention of these effects by coexpression of Bcl-xL. FEBS Lett. 415: 29-32 https://doi.org/10.1016/S0014-5793(97)01087-9
  11. Martinou, I., S. Desagher, R. Eskes, B. Antonsson, E. Andre, S. Fakan, and J. C. Martinou. 1999. The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J. Cell Biol. 144: 883-889 https://doi.org/10.1083/jcb.144.5.883
  12. Middleton, R. J. 1990. Hexokinases and glucokinases. Biochem. Soc. Trans. 18: 180-183 https://doi.org/10.1042/bst0180180
  13. Muzi, M., S. D. Freeman, R. C. Burrows, R. W. Wiseman, J. M. Link, K. A. Krohn, M. M. Graham, and A. M. Spence. 2001. Kinetic characterization of hexokinase isoenzymes from glioma cells: Implications for FDG imaging of human brain tumors. Nucl. Med. Biol. 28: 107-116 https://doi.org/10.1016/S0969-8051(00)00201-8
  14. Pastorino, J. G, N. Shulga, and J. B. Hoek. 2002. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J. Biol. Chem. 277: 7610-7618 https://doi.org/10.1074/jbc.M109950200
  15. Pilkis, S. J., I. T. Weber, R. W. Harrison, and G. I. Bell. 1994. Glucokinase: Structural analysis of a protein involved in susceptibility to diabetes. J. Biol. Chem. 269: 21925-21928
  16. Ro, H. S., H. K. Park, M. G. Kim, and B. H. Chung. 2005. In vitro formation of protein nanoparticle using recombinant human ferritin H and L chains produced from E. coli. J. Microbiol. Biotechnol. 15: 254-258
  17. Ro, H. S., M. S. Lee, M. S. Hahm, H. S. Bae, and B. H. Chung. 2005. Production of active carboxypeptidase Y of Saccharomyces cerevisiae secreted from methylotrophic yeast Pichia pastoris. J. Microbiol. Biotechnol. 15: 202-205
  18. Rolland, F. and J. Sheen. 2005. Sugar sensing and signalling networks in plants. Biochem. Soc. Trans. 33: 269-271 https://doi.org/10.1042/BST0330269
  19. Rolland, F., V. Wanke, L. Cauwenberg, P. Ma, E. Boles, M. Vanoni, J. H. Winde, J. M. Thevelein, and J. Winderickx. 2001. The role of hexose transport and phosphorylation in cAMP signalling in the yeast Saccharomyces cerevisiae. FEMS Yeast Res. 1: 33-45
  20. Shinohara, Y., K. Yamamoto, K. Kogure, J. Ichihara, and H. Terada. 1994. Steady state transcript levels of the type II hexokinase and type 1 glucose transporter in human tumor cell lines. Cancer Lett. 82: 27-32 https://doi.org/10.1016/0304-3835(94)90142-2
  21. Stulke, J. and W. Hillen. 1999. Carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2: 195-201 https://doi.org/10.1016/S1369-5274(99)80034-4
  22. Sui, D. and J. E. Wilson. 1997. Structural determinants for the intracellular localization of the isozymes of mammalian hexokinase: Intracellular localization of fusion constructs incorporating structural elements from the hexokinase isozymes and the green fluorescent protein. Arch. Biochem. Biophys. 345: 111-125 https://doi.org/10.1006/abbi.1997.0241
  23. Tsai, H. J. and J. E. Wilson. 1997. Functional organization of mammalian hexokinases: Characterization of the rat type III isozyme and its chimeric forms, constructed with the N-and C-terminal halves of the type I and type II isozymes. Arch. Biochem. Biophys. 338: 183-192 https://doi.org/10.1006/abbi.1996.9850
  24. Wilson, J. E. 1997. An introduction to the isoenzymes of mammalian hexokinase types I-III. Biochem. Soc. Trans. 25: 103-107 https://doi.org/10.1042/bst0250103
  25. Wilson, J. E. 1990. Hexokinases. Rev. Physiol. Biochem. Pharmacol. 126: 165-198
  26. Wilson, J. E. 1989. Rapid purification of mitochondrial hexokinase from rat brain by a single affinity chromatography step on Affi-Gel blue. Prep. Biochem. 19: 13-21 https://doi.org/10.1080/10826068908544893