DOI QR코드

DOI QR Code

헤테로 구조 Cu-Fe 나노분말의 제조 연구

Study of Mechanically Alloyed Nano Cu-Fe Particles With a Hetero-Structure

  • 엄영랑 (한국원자력연구원, 원자력나노소재응용랩) ;
  • 이희민 (한국원자력연구원, 원자력나노소재응용랩) ;
  • 이창규 (한국원자력연구원, 원자력나노소재응용랩)
  • Uhm, Y.R. (Nuclear Nanomaterials Development Lab., Korea Atomic Energy Research Institute) ;
  • Lee, H.M. (Nuclear Nanomaterials Development Lab., Korea Atomic Energy Research Institute) ;
  • Rhee, C.K. (Nuclear Nanomaterials Development Lab., Korea Atomic Energy Research Institute)
  • 발행 : 2007.04.28

초록

The magnetic alloys of Cu-Fe ($Cu_{50}Fe_{50},\;Cu_{80}Fe_{20}\;and\;Cu_{90}Fe_{10}$) were prepared by a mechanical alloying method and their structural and magnetic behaviors were examined by X-ray diffraction and Mossbauer spectra. The magnetization curves did not distinctly show the saturation at 70 kOe for the concentrated alloys of $Cu_{80}Fe_{20}\;and\;Cu_{90}Fe_{10}$. The Mossbauer spectrum of $Cu_{80}Fe_{20}$ at room temperature shows one Lorentzian line of the paramagnetic phase, whereas the Mossbauer spectrum of $Cu_{90}Fe_{10}$ consists of sextet Lorentzian line at room temperature and a centered doublet line. The Mossbauer spectra of $Cu_{90}Fe_{10}$ measured in the temperature ranges from 13 to 295 K, implies that $Cu_{90}Fe_{10}$ to consists of two magnetic phases. One superimposed sextet corresponds to the ferromagnetic iron in Cu and the other one indicates the superparamagnetic iron rich phase.

키워드

참고문헌

  1. R. W. Siegel and G. E. Fouger: Nanostruct. Master., 9 (1995) 205 https://doi.org/10.1016/0965-9773(95)00044-5
  2. M. F. Hansen and S. Morup: J. Magn. Magn. Mater., 184 (1998) 262 https://doi.org/10.1016/S0304-8853(97)01165-7
  3. R. H. Kodama: J. Magn. Magn. Mater., 200 (1999) 359 https://doi.org/10.1016/S0304-8853(99)00347-9
  4. Q. Liu and Z. Xu: J. Appl. Phys., 79 (1996) 4702 https://doi.org/10.1063/1.361711
  5. J. M. D. Coey: Phys. Rev. Lett., 27 (1971) 1140 https://doi.org/10.1103/PhysRevLett.27.1140
  6. M. Chatterjee, M. K. Naskar, P. K. Chakrabarty and D. Ganguli: Mater. Lett., 57 (2002) 87 https://doi.org/10.1016/S0167-577X(02)00704-8
  7. J. T. Kemshead, J. G. Treleaven, F. M. Gibson, J. Ugllstad, A. Rembaum and T. Philip: Prog. Exp. Tumor Res., 29 (1985) 249
  8. A. Ye, Yermakov, M. A. Uimin, A. V. Shanuro, A. V. Zarubin, Y. V. Chechetkin, A. K. Shtolz, V. V. Kondratyev, G. N. Konygin, Y. P. Yelsukov, S. Enzo, P. P. Macri, R. Frattni and N. Cowlam: Mater. Sci. Forum, 225-227 (1996) 147 https://doi.org/10.4028/www.scientific.net/MSF.225-227.147
  9. Y. R. Uhm, W. W. Kim, S. J. Kim, C. S. Kim and C. K. Rhee: J Appl. Phys., 93 (2003) 7196 https://doi.org/10.1063/1.1558234
  10. A. Ye, Yermakov, M. A. Uimin, A. A. Mysik, A. Yu, korobeinikov, A. V. Korolyov, N. V. Mushnikov, T. Goto, V. S. Gavoko and N. N. Schegoleva: Mater. Sci. Forum, 386-388 (2002) 455 https://doi.org/10.4028/www.scientific.net/MSF.386-388.455
  11. Y. R. Uhm, W. W. Kim and C. K. Rhee: Mater. Sci. Engin. B, 106 (2004) 224 https://doi.org/10.1016/j.mseb.2003.08.057
  12. K. E. Gonsalves, S. P. Rangarajan and J. Wang: Handbook of Nanostructured Materials and Nanotechnology (Edited by H. S. Nalwa), Academic Press, Vol. 1, 1-21 (2000)
  13. Y. R. Uhm, W. W. Kim and C. K. Rhee, 'Proceedings of International magnetic conference 2003 (Boston, U.S.A., March 28-April 3, 2003), edited by magnetic society of the IEEE