DOI QR코드

DOI QR Code

Effects of Additive Composition and Content on Sintered Density and Compressive Strength of Cordierite Ceramics

첨가제의 조성과 함량이 코디어라이트 세라믹스의 소결밀도와 압축강도에 미치는 영향

  • Jang, Doo-Hee (Department of Materials Science and Engineering, the University of Seoul) ;
  • Lim, Kwang-Young (Department of Materials Science and Engineering, the University of Seoul) ;
  • Kim, Young-Wook (Department of Materials Science and Engineering, the University of Seoul)
  • 장두희 (서울시립대학교 신소재공학과) ;
  • 임광영 (서울시립대학교 신소재공학과) ;
  • 김영욱 (서울시립대학교 신소재공학과)
  • Published : 2007.04.30

Abstract

Cordierite ceramics were fabricated via a reaction sintering process using ceramics-filled polysiloxane as a precursor for cordierite ceramics. In this study, the effects of the additive composition, additive content, and sintering temperature on the sintered density and compressive strength of cordierite ceramics have been investigated The sintered densities of reaction-sintered cordierite ceramics containing $TiO_2$ as an additive were insensitive to the additive composition, additive content, and sintering temperature and ranged from $1.92g/cm^3\;to\;2.06g/cm^3$. In contrast, the cordierite ceramics containing $Y_2O_3$ showed a maximal density of $2.21g/cm^3$ at 5 wt% addition and at a sintering temperature of $1400^{\circ}C$. The compressive strength of cordierite ceramics showed the same tendency with the density. Typical compressive strength of cordierite ceramics containing 5 wt% $Y_2O_3$ as a sintering additive and sintered at $1400^{\circ}C\;was\;{\sim}480MPa$.

Keywords

References

  1. M. A. Camerucci, G. Urretavizcaya, and A. L. Cavalieri, 'Sintering of Cordierite Based Materials,' Ceram. Int., 29 [2] 159-68 (2003) https://doi.org/10.1016/S0272-8842(02)00100-1
  2. T. D. Senguttuvan, H. S. Kalsi, K. S. Sharda, and B. K. Das, 'Sintering Behavior of Alumina Rich Cordierite Porous Ceramics,' Mater. Chem. Phys., 67 [1-3] 146-50 (2001) https://doi.org/10.1016/S0254-0584(00)00432-6
  3. F. A. Oliveira Coast, 'Elastic Moduli of Open-Cell Cordierite Foams,' J. Non-Cryst. Solids, 351 [19-20] 1623-29 (2005) https://doi.org/10.1016/j.jnoncrysol.2005.04.051
  4. C. Ghitulica, E. Andronescu, G. Dumitru, and St. Stoleriu, 'Preparation of Alumina and Cordierite-Based Porous Ceramic Materials,' Proc. of 8th ECERS, 2247-50 (2004)
  5. Z. Acimovic, L. Pavlovic, L. Trumbulovic, L. Andric, and M. Stamatovic, 'Synthesis and Characterization of the Cordierite Ceramics from Nonstandard Raw Materials for Application in Foundry,' Mater. Lett., 57 2651-56 (2003) https://doi.org/10.1016/S0167-577X(02)01345-9
  6. H. Suzuki, K. Ota, and H. Saito, 'Preparation of Cordierite Ceramics from Metal Alkoxides (Part 1),' J. Ceram. Soc. Jpn., 95 [2] 163-69 (1987)
  7. H. Suzuki, K. Ota, and H. Saito, 'Preparation of Cordierite Ceramics from Metal Alkoxides (Part 2),' J. Ceram. Soc. Jpn., 95 [2] 170-75 (1987)
  8. R. Morell, 'The Mineralogy and Properties of Sintered Cordierite Glass Ceramics,' Proc. Brit. Ceram. Soc., 28 53- 71 (1979)
  9. R. S. Lamar and M. F. Warner, 'Reaction and Fired-Property Studies of Cordierite Compositions,' J. Am. Ceram. Soc., 37 [2] 602-10 (1954) https://doi.org/10.1111/j.1151-2916.1954.tb13995.x
  10. M. Awano, H. Takagi, and Y. Kuwahara, 'Grinding Effects on the Synthesis and Sintering of Cordierite,' J. Am. Ceram. Soc., 75 [9] 2535-40 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb05608.x
  11. C. A. Bertran, N. T. D. Silva, and G. P. Thim, 'Citric Acid Effect on Aqueous Sol-el Cordierite Synthesis,' J. Non-Cryst. Solids, 273 [1-3] 140-44 (2000) https://doi.org/10.1016/S0022-3093(00)00157-5
  12. O. Cakr, 'Production of Cordierite from Domestic Raw Materials,' M. Sc. Thesis, Middle East Technical University, Ankara, Turkey, 1981
  13. M. H. Han and K. C. Park, 'Synthesis and Sintering of Cordierite by using Coprecipitation Method(in Korean),' J. Kor. Ceram. Soc., 27 [7] 899-906 (1990)
  14. D. H. Jang, Y.-W. Kim, and H. D. Kim, 'Processing of Porous Cordierite Ceramics with Controlled Porosity,' J. Ceram. Soc. Jpn., 115 [1] 52-58 (2007) https://doi.org/10.2109/jcersj.115.52
  15. Y.-W. Kim, H. D. Kim, and C. B. Park, 'Processing of Microcellular Mullite,' J. Am. Ceram. Soc., 88 [12] 3311-15 (2005) https://doi.org/10.1111/j.1551-2916.2005.00597.x
  16. Y.-W. Kim, S.H. Kim, H.D. Kim, and C.B. Park, 'Processing of Closed-Cell Silicon Oxycarbide Foams from a Preceramic Polymer,' J. Mater. Sci., 39 5647-52 (2004) https://doi.org/10.1023/B:JMSC.0000040071.55240.85
  17. R. Goren, C. Ozgur, and H. Gocmez, 'The Preparation of Cordierite from Talc, Fly Ash, Fused Silica, and Alumina Mixtures,' Ceram. Int., 32 [1] 53-56 (2006) https://doi.org/10.1016/j.ceramint.2005.01.001
  18. Y. He, W. Cheng, H. Cai, 'Characterization of \alpha-Cordierite Glass-Ceramics from Fly Ash,' J. Hazard. Mater., B 120, 265-69 (2005) https://doi.org/10.1016/j.jhazmat.2004.10.028
  19. U. U. Chi, S. W. Choi, and K. H. Kim, 'Synthesis of Cordierite and Preparation of Refractory Setter from Domestic Raw Materials(in Korean),' J. Kor. Ceram. Soc., 12 [4] 19-28 (1975)

Cited by

  1. Effects of Pre-sintered Granules on the Characteristics of Porous Zirconia vol.49, pp.6, 2012, https://doi.org/10.4191/kcers.2012.49.6.566
  2. Fabrication and Characterization of Onggi Filter for Appropriate Water Treatment Technology vol.54, pp.2, 2017, https://doi.org/10.4191/kcers.2017.54.2.06
  3. Effects of ZrO2 Addition on Mechanical Strength and Thermal Shock Resistance of Cordierite-Mullite Ceramics vol.28, pp.12, 2018, https://doi.org/10.3740/MRSK.2018.28.12.719