DOI QR코드

DOI QR Code

Weight Control Mechanisms and Antiobesity Functional Agents

체중조절 기전과 항비만 기능성물질

  • Ahn, In-Sook (School of Life and Food Sciences, Handong Global University) ;
  • Park, Kun-Young (Dept. of Food Science and Nutrition, Pusan National University) ;
  • Do, Myoung-Sool (School of Life and Food Sciences, Handong Global University)
  • 안인숙 (한동대학교 생명식품과학부) ;
  • 박건영 (부산대학교 식품영양학과) ;
  • 도명술 (한동대학교 생명식품과학부)
  • Published : 2007.04.30

Abstract

The obese population has been increasing worldwide and obesity has become one of the socioeconomic problems. Obesity raises more concerns as more studies regarding its direct and indirect relativity to several diseases such as type II diabetes, hypertension, etc. are published. Since leptin, an important signal in the chronic control of food intake and energy expenditure, was discovered in 1994, there has been a great accumulation of knowledge on fighting obesity by facilitating pharmacological and nutritional strategies on the molecular level of the body weight control system. In particular, evidences are accumulating that particular food components affect our physiological function and gene expressions which are associated with body weight control. In this study, we review the four mechanisms for weight control and antiobesity functional agents such as HCA, L-carnitine, CLA, chitosan, calcium supplements capsaicin contained in red pepper, and oriental herbal mixture. We also describe about the efficacy and working mechanism of these functional agents on the basis of antiobesity mechanisms.

Keywords

References

  1. Elmquist JK, Coppari R, Balthasar N, Ichinose M, Lowell BB. 2005. Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol 493: 63-71 https://doi.org/10.1002/cne.20786
  2. Kopelman PG. 1994. Causes and consequences of obesity. Med Int 22: 385-388
  3. Lew EA. 1985. Mortality and weight: insured lives and the American Cancer Society studies. Ann Intern Med 103: 1024-1029 https://doi.org/10.7326/0003-4819-103-6-1024
  4. Flegal KM, Carroll MD, Kuczmarski RJ, Johnson CL. 1998. Overweight and obesity in the United States: prevalence and trends, 1960-1994. Int J Obes Relat Metab Disord 22: 39-47 https://doi.org/10.1038/sj.ijo.0800541
  5. Friedrich MJ. 2002. Epidemic of obesity expands its spread to developing countries. JAMA 20: 1382-1386 https://doi.org/10.1001/jama.287.11.1382
  6. 한국보건사회연구원. 한국인의 보건의식 행태. 1995
  7. 보건복지부-2005년 국민건강 영양조사. Available from URL: http://bbs3.finance.daum.net/griffin/do/insubase/ read?bbsId=insubase&articleId=32&pageIndex=2&search Key=&searchValue=
  8. Rolls BJ, Shide DJ, Thorwart ML, Ulbrecht JS. 1988. Sibutramine reduces food intake in nondieting women with obesity. Obes Res 6: 1-11
  9. Hansen DL, Toubro S, Stock MJ, Macdonald IA, Astrup A. 1988. Thermogenic effects of sibutramine in humans. Am J Clin Nutr 68: 1180-1186
  10. Ransac S, Gargouri Y, Moreau H, Verger R. 1991. Inactivation of pancreatic and gastric lipases by tetrahydrolipstatin and alkyl-dithio-5-(2-nitrobenzoic acid). A kinetic study with 1,2-didecanoyl-sn-glycerol monolayers. Eur J Biochem 202: 395-400 https://doi.org/10.1111/j.1432-1033.1991.tb16387.x
  11. Apfelbaum M, Vague P, Ziegler O, Hanotin C, Thomas F, Leutenegger E. 1999. Long-term maintenance of weight loss after a very low calorie diet: efficacy and tolerability of sibutramine. Am J Med 106: 179-184 https://doi.org/10.1016/S0002-9343(98)00411-2
  12. Yum KS. 2001. Orlistat ($Xenical^R$). Korean J Obesity 10: 25-36
  13. Yim KS. 2003. A guide for selecting substitutional foods for obesity treatment. Korean J Commun Nutr 8: 424-432
  14. Palou A, Pico C, Bonet ML 2004. Food safety and functional foods in the European Union: obesity as a paradigmatic example for novel food development. Nutr Rev 62: 169-181 https://doi.org/10.1301/nr.2004.jul.S169-S181
  15. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. 2000. Central nervous system control of food intake. Nature 6: 661-671 https://doi.org/10.1038/nmat1978
  16. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O'Rahilly S. 1997. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387: 903-908 https://doi.org/10.1038/43185
  17. Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougneres P, Lebouc Y, Froguel P, Guy- Grand BA. 1998. Mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392: 398-401 https://doi.org/10.1038/32911
  18. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. 2001 A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50: 1714-1719 https://doi.org/10.2337/diabetes.50.8.1714
  19. Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, Purnell JQ. 2002. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 346: 1623-1630 https://doi.org/10.1056/NEJMoa012908
  20. 김성수. 2004. 기능성 높은 새로운 비만치료제의 전망. 대한비만학회 춘계학술대회. p 165-175
  21. Shi Y, Burn P. 2004. Lipid metabolic enzymes: emerging drug targets for the treatment of obesity. Nat Rev Drug Discov 3: 695-710 https://doi.org/10.1038/nrd1469
  22. Cinti S. 2005. The adipose organ. Prostaglandins Leukot Essent Fatty Acids 73: 9-15 https://doi.org/10.1016/j.plefa.2005.04.010
  23. Lowell BB, S-Susulic V, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, Kozak LP, Flier JS. 1993. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366: 740-742 https://doi.org/10.1038/366740a0
  24. Ramsay TG. 1996. Fat cells. Endocrinol Metab Clin North Am 25: 847-870 https://doi.org/10.1016/S0889-8529(05)70358-3
  25. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. 2000. Transcriptional regulation of adipogenesis. Genes Dev 14: 1293-1307 https://doi.org/10.1101/gad.14.11.1293
  26. Birnbaum MJ. 2003. Lipolysis: more than just a lipase. J Cell Biol 161: 1093-1103 https://doi.org/10.1083/jcb.200306008
  27. Lowenstein JM. 1971. Effect of (-)-hydroxycitrate on fatty acid synthesis by rat liver in vivo. J Biol Chem 346: 620-622
  28. Sullivan AC, Hamilton JG, Miller ON, Wheatley VR. 1972. Inhibition of lipogenesis in rat liver by (-)-hydroxycitrate Arch Biochem Biophys 150: 183-190 https://doi.org/10.1016/0003-9861(72)90025-2
  29. Mattes RD, Bormann L. 2000. Effects of (-)-hydroxycitric acid on appetitive variables. Physiol Behav 71: 87-94 https://doi.org/10.1016/S0031-9384(00)00321-8
  30. Kovacs EM, Westerterp-Plantenga MS, Saris WH. 2001. The effects of 2-week ingestion of (-)-hydroxycitrate and (-)-hydroxycitrate combined with medium-chain triglycerides on satiety, fat oxidation, energy expenditure and body weight. Int J Obes Relat Metab Disord 25: 1087- 1094 https://doi.org/10.1038/sj.ijo.0801605
  31. Kwon TD, Kim KH, Kim JY, Yeo YH, Lim KW. 2003. The effets of HCA supplementation and swimming on abesity and lipid metabolism in high-fat diet fed rats. The Korean J Exercise Nutr 7: 87-92
  32. Burns AA, Livingstone MB, Welch RW, Dunne A, Reid CA, Rowland IR. 2001. The effects of yoghurt containing a novel fat emulsion on energy and macronutrient intakes in non-overweight, overweight and obese subjects. Int J Obes Relat Metab Disord 25: 1487-1496 https://doi.org/10.1038/sj.ijo.0801720
  33. Burns AA, Livingstone MB, Welch RW, Dunne A, Rowland IR. 2002. Dose-response effects of a novel fat emulsion (Olibra) on energy and macronutrient intakes up to 36 h post-consumption. Eur J Clin Nutr 56: 368-377 https://doi.org/10.1038/sj.ejcn.1601326
  34. Delzenne NM, Cani PD, Daubioul C, Neyrinck AM. 2005. Impact of inulin and oligofructose on gastrointestinal peptides. Br J Nutr 1: 157-161 https://doi.org/10.1079/BJN20041342
  35. Cani PD, Neyrinck AM, Maton N, Delzenne NM. 2005. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like peptide-1. Obes Res 13: 1000-1007 https://doi.org/10.1038/oby.2005.117
  36. Westerterp-Plantenga MS, Smeets A, Lejeune MP. 2005. Sensory and gastrointestinal satiety effects of capsaicin on food intake. Int J Obes Relat Metab Disord 29: 682-688 https://doi.org/10.1038/sj.ijo.0802862
  37. Zacour AC, Silva ME, Cecon PR, Bambirra EA, Vieira EC. 1992. Effect of dietary chitin on cholesterol absorption and metabolism in rats. J Nutr Sci Vitaminol 38: 609-613 https://doi.org/10.3177/jnsv.38.609
  38. Heuman DM, Hernandez CR, Hylemon PB, Kubaska WM, Hartman C, Vlahcevic ZR. 1988. Regulation of bile acid synthesis. I. Effects of conjugated ursodeoxycholate and cholate on bile acid synthesis in chronic bile fistula rat. Hepatology 8: 358-365 https://doi.org/10.1002/hep.1840080228
  39. Nagyvary JJ, Falk JD, Hill ML, Schmidt ML, Wilkins AK, Brdbury EL. 1979. The hypolipidemic activity of chitosan and other polysaccharides in rats. Nutr Rep Int 30: 677-684
  40. Park JR, Moon IS, Choi SH, Shon MY. 1999. Effect of chitin and chitosan on lipid metabolism in rats. J Korean Soc Food Sci Nutr 28: 477-483
  41. Maezaki Y, Tsuji K, Nakagawa Y. 1993. Hypocholesterolemic effect of chitosan in adult males. Biosci Biotech Biochem 579: 1439-1444
  42. Mhurchu CN, Poppitt SD, McGill AT, Leachy FE, Bennet DA, Lin RB. 2004. The effect of the dietary supplementary, chitosan, on body weight: a randomized controlled trial in 250 overweight and obese adults. Int J Obesity 28: 1149- 1156 https://doi.org/10.1038/sj.ijo.0802693
  43. Koide SS. 1998. Chitin-chitosan: properties, benefits and risks. Nutrition Research 18: 1091-1101 https://doi.org/10.1016/S0271-5317(98)00091-8
  44. Griffiths DW. 1986. The inhibition of digestive enzymes by polyphenolic compounds. Adv Exp Med Biol 199: 509-516 https://doi.org/10.1007/978-1-4757-0022-0_29
  45. Wang S, Noh SK, Koo SL. 2002. Green tea epigallocatechin gallate inhibits the luminal hydrolysis and lymphatic output of phosphatidylchiline and lowers the lymphatic absorption of fat and ${\alpha}$-tocopherol in ovariectomized rats. FASEB J 16: A644
  46. Wang S, Noh SK, Koo SL. 2006. Green tea catechins inhibit pancreatic phospholipase A(2) and intestinal absorption of lipids in ovariectomized rats. J Nutr Biochem 17: 492-498 https://doi.org/10.1016/j.jnutbio.2006.03.004
  47. Kawada T, Sakabe S, Aoki N, Watanabe T, Higeta K, Iwai K, Sugimoto E. 1991. Intake of sweeteners and pungent ingredients increases the thermogenin content in brown adipose tissue of rat. J Agric Food Chem 39: 651-654 https://doi.org/10.1021/jf00004a004
  48. Kobayashi A, Osaka T, Namba Y, Inoue S, Lee TH, Kimura S. 1998. Capsaicin activates heat loss and heat production simultaneously and independently in rats. Am J Physiol 275: 92-98
  49. Choo J.J, Shin HJ. 1999. Body-fat suppresive effects of capsaicin through ${\beta}$-adrenergic stimulation in rats fed a high-fat diet. Korean J Nutr 32: 533-539
  50. Sambaiah K, Satyanarayana MN. 1982. Influence of red pepper and capsaicin on oxygen consumption and lipogenesis in rats. J Biosci 4: 425-430 https://doi.org/10.1007/BF02704635
  51. Do MS, Hong SE, Ha JH, Choi SM, Ahn IS, Yoon JY, Park KY. 2004. Increased lipolytic activity by high pungency red pepper (var. Chungyang) in rat adipocytes in vitro. J Food Sci Nutr 9: 34-38 https://doi.org/10.3746/jfn.2004.9.1.034
  52. Lim K, Yoshioka M, Kikuzato S, Kiyonaga A, Tanaka H, Shodo M, Suzuki M. 1997. Dietary red pepper ingestion increases carbohydrate oxidation at rest and during exercise in runners. Med Sci Sprts Exerc 29: 355-361 https://doi.org/10.1097/00005768-199703000-00010
  53. Yoshioka M, St-Pierre S, Suzuki M, Tremblay A. 1998. Effect of red pepper added to high-fat and high-carbohydrate meals on energy metabolism and substrate utilization in Japanese women. Br J Nutr 80: 503-510 https://doi.org/10.1017/S0007114598001597
  54. Choi SM, Jeon YS, Rhee SH, Park KY. 2002. Red pepper powder and Kimchi reduce body weight and blood and tissue lipids in rats fed a high fat diet. Nutraceuticals & Food 7: 162-167
  55. Rhee SH, Kong KR, Jung KO, Park KY. 2003. Decreasing effect of Kochujang on body weight and lipid levels of adipose tissues and serum in rats fed a high-fat diet. J Food Sci Nutr 32: 882-886 https://doi.org/10.3746/jkfn.2003.32.6.882
  56. Tokunaga S, White IR, Frost C, Tanaka K, Kono S, Tokudome S, Akamatsu T, Moriyama T, Zakouji H. 2002. Green tea consumption and serum lipids and lipoproteins in a population of healthy workers in Japan. Ann Epidemiol 12: 157-165 https://doi.org/10.1016/S1047-2797(01)00307-6
  57. Kazutoshi S, Shixing L, Guodong Z, Itaro O. 2003. Anti-obesity activity of green tea powder and major components. Seventh International Symposium on Green Tea, Korean Society of Food Science and Technology, Seoul, Korea
  58. Choo J.J. 2003. Green tea reduces body fat accretion caused by high-fat diet in rats through $\beta$-adrenoceptor activation of thermogenesis in brown adipose tissue. J Nutr Biochem 14: 671-676 https://doi.org/10.1016/j.jnutbio.2003.08.005
  59. Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, Chantre P, Vandermander J. 1999. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 70: 1040-1045 https://doi.org/10.1093/ajcn/70.6.1040
  60. Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J. 2000. Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord 24: 252-258 https://doi.org/10.1038/sj.ijo.0801101
  61. Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, Chantre P, Vandermander J. 2000. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 72: 1232-1234 https://doi.org/10.1093/ajcn/72.5.1232
  62. Tschida T, Itakura H, Nakamura H. 2002. Reduction of body fat humans by long-term ingestion of catechins. Prog Med 22: 2189-2203
  63. Puigserver P, Vazquez F, Bonet ML, Pico C, Palou A. 1996. In vitro and in vivo induction of brown adipocyte uncoupling protein (thermogenin) by retinoic acid. Biochem J 317: 827-833 https://doi.org/10.1042/bj3170827
  64. Bonet ML, Oliver J, Pico C, Felipe F, Ribot J, Cinti S, Palou A. 2000. Opposite effects of feeding a vitamin A-deficient diet and retinoic acid treatment on brown adipose tissue uncoupling protein 1 (UCP1), UCP2 and leptin expression. J Endocrinol 166: 511-517 https://doi.org/10.1677/joe.0.1660511
  65. Portillo MP, Serra F, Simon E, del Barrio AS, Palou A. 1998. Energy restriction with high-fat diet enriched with coconut oil gives higher UCP1 and lower white fat in rats. Int J Obes Relat Metab Disord 22: 974-979 https://doi.org/10.1038/sj.ijo.0800706
  66. Rodriguez VM, Portillo MP, Pico C, Macarulla MT, Palou A. 2002. Olive oil feeding up-regulates uncoupling protein genes in rat brown adipose tissue and skeletal muscle. Am J Clin Nutr 75: 213-220 https://doi.org/10.1093/ajcn/75.2.213
  67. Lee MS, Lee HJ, Lee HS, Kim Y. 2006. L-Carnitine stimulates lipolysis via induction of the lipolytic gene expression and suppression in 3T3-L1 adipocytes. J Med Food 9: 468-473 https://doi.org/10.1089/jmf.2006.9.468
  68. Alesci S, De Martino MU, Mirani M, Benvenga S, Trimarchi F, Kino T, Chrousos GP. 2003. L-carnitine: a nutritional modulator of glucocorticoid eceptor functions. FASEB 17: 1553-1555 https://doi.org/10.1096/02-1024fje
  69. Ibrahim WH, Bailey N, Sunvold GD, Bruckner GG. 2003. Effects of carnitine and taurine on fatty acid metabolism and lipid accumulation in the liver of cats during weight gain and weight loss. Am J Vet Res 64: 1265-1277 https://doi.org/10.2460/ajvr.2003.64.1265
  70. Barnett C, Costill DL, Vukovich MD. 1994. Effect of L-carnitine supplementation on muscle and blood carnitine content and lactate accumulation during highintensity sprint cycling. Int J Sport Nutr 4: 280-288 https://doi.org/10.1123/ijsn.4.3.280
  71. Karlic H, Lohninger A. 2004. Supplementation of L-carnitine in athletes: does it make sense? Nutrition 20: 709-715 https://doi.org/10.1016/j.nut.2004.04.003
  72. Peters J.M, Park Y, Gonazalez F.J, Pariza M.W. 2001. Influence of conjugated linoleic acid on body composition and target gene expression in peroxisome proliferator- activated receptor ${\alpha}$-null mice. Biochem Biophys Acta 1553: 233-242
  73. Wang YW, Jones PJH. 2004. Conjugated linolric acid and obesity control: efficacy and mechanisms. Int J Obes Relat Metab Disord 28: 941-955 https://doi.org/10.1038/sj.ijo.0802641
  74. Ha JH, Ahn IS, Byun JM, Do HK, Jung SY, Jeong JH, Wakle KWJ, Park KY, Do MS. 2003. Effects of conjugated linoleic acid on adipocytes secreted proteins in vitro. J Food Sci Nutr 8: 253-259 https://doi.org/10.3746/jfn.2003.8.3.253
  75. West DB, Delany JP, Camet PM, Blohm F, Truett AA, Scimeca J. 1998. Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol 275: 667-672
  76. Metz JA, Karanja N, Torok J, McCarron DA. 1988. Modification of total body fat in spontaneously hypertensive rats and Wistar-Kyoto rats by dietary calcium and sodium. Am J Hypertens 1: 58-60
  77. Bursey RG, Sharkey T, Miller GD. 1989. High calcium intake lowers weight in lean and fatty Zucker rats. FASEB J 3: A265
  78. Zemel M. 2003. Role of dietary calcium and dairy products in modulating adiposity. Lipids 38: 139-146 https://doi.org/10.1007/s11745-003-1044-6
  79. Zemel M. 2003. Dietary calcium and dairy products accelerate weight and fat loss during energy restriction in obese adults. Am J Clin Nutr 75: 3425-3435
  80. Teegarden D. 2003. Calcium intake and reduction in weight or fat mass. J Nutr 133: 249-251 https://doi.org/10.1093/jn/133.1.249S
  81. Zemel M. 2003. Mechanisms of dairy modulation of adiposity. J Nutr 133: 252-256 https://doi.org/10.1093/jn/133.1.252S
  82. Kovacs EM, Mela DJ. 2006. Metabolically active functional food ingredients for weight control. Obes Rev 7: 59-78 https://doi.org/10.1111/j.1467-789X.2006.00203.x
  83. Preuss HG, DiFerdinando D, Bagchi M, Bagchi D. 2002. Citrus aurantium as a thermogenic, weight-reduction replacement for ephedra: an overview. J Med 33: 247-264
  84. Shin JH, Lee SJ, Sung NJ. 2002. Effects of Zingiber mioga, Zingiber mioga root and Zingiber officinale on the lipid concentration in hyperlipidemic rats. J Korean Soc Food Sci Nutr 31: 679-684 https://doi.org/10.3746/jkfn.2002.31.4.679
  85. Kang SA, Jang KH, Park SK, Lim JP, Jeon H, Cui X, Leem KH. 2003. Effects of herbal composition on obese rats fed high fat diet. Kor J Herbology 18: 59-64
  86. Moon GA, Choi SM, Kim SH, Kim SS, Kang JY, Yoon YS. 2003. Human and animal study on the natural food for obesity and metabolic syndrome risk factors. J Korean Soc Food Sci Nutr 32: 1394-1400 https://doi.org/10.3746/jkfn.2003.32.8.1394
  87. Kobayashi Y, Nakano Y, Kizaki M, Hoshikuma K, Yokoo Y, Kamiya T. 2001. Capsaicin-like anti-obese activities of evodiamine from fruits of Evodia rutaecarpa, a vanilloid receptor agonist. Planta Med 67: 628-633 https://doi.org/10.1055/s-2001-17353

Cited by

  1. Improvement of High-fat Diet-induced Obesity by Xanthigen in C57BL/6N Mice vol.22, pp.12, 2012, https://doi.org/10.5352/JLS.2012.22.12.1697
  2. Effects of Oenanthe javanica, Coicis lachryma-jobi L. var., and Plantaginis asiatica L. Water Extracts on Activities of Key Enzymes on Lipid Metabolism vol.38, pp.11, 2009, https://doi.org/10.3746/jkfn.2009.38.11.1516
  3. Anti-Obesity Effect of Pine Cone (Pinus koraiensis) Supercritical Extract in High-Fat Diet-Induced Obese Mice vol.45, pp.12, 2016, https://doi.org/10.3746/jkfn.2016.45.12.1701
  4. Effect of Lythrum salicaria L. Ethanol Extract on Lipid Metabolism and Anti-Obesity in Rat Fed High Fat Diet vol.19, pp.5, 2011, https://doi.org/10.7783/KJMCS.2011.19.5.319
  5. Biological Activities of Mesembryanthemum crystallinum (Ice plant) Extract vol.25, pp.6, 2015, https://doi.org/10.5352/JLS.2015.25.6.638
  6. Effects of Ethanol Extract from Leaves of Eleutherococcus senticosu on Hyperlipidemia in Rats vol.41, pp.3, 2012, https://doi.org/10.3746/jkfn.2012.41.3.333
  7. Anti-obesity Effect of Monascus pilosus Mycelial Extract in High Fat Diet-induced Obese Rats vol.54, pp.3, 2011, https://doi.org/10.3839/jabc.2011.033
  8. Anti-Obesity Effect of By-Product from Soybean on Mouse Fed a High Fat Diet vol.28, pp.2, 2015, https://doi.org/10.7732/kjpr.2015.28.2.168
  9. Effects of Heat, pH, and Gamma Irradiation Treatments on Lipase Inhibitory Activity of Sargassum thunbergii Ethanol Extract vol.41, pp.4, 2012, https://doi.org/10.3746/jkfn.2012.41.4.566
  10. Suppressive Effects of By-Product Extracts from Soybean on Adipocyte Differentiation and Expression of Obesity-Related Genes in 3T3-L1 Adipocytes vol.21, pp.3, 2011, https://doi.org/10.5352/JLS.2011.21.3.358
  11. Fermented Crataegi fructus Vinegar Improves Lipid Metabolism in Rats Fed High Fat Diet vol.38, pp.8, 2009, https://doi.org/10.3746/jkfn.2009.38.8.1024
  12. Effects of Foeniculi fructus Water Extracts on Activities of Key Enzymes of Lipid Metabolism Related with Obesity vol.24, pp.2, 2011, https://doi.org/10.7732/kjpr.2011.24.2.181
  13. Effect of Temperature and pH on Trypsin Inhibitory Activity of Ethanol Extracts from Ecklonia cava vol.27, pp.6, 2012, https://doi.org/10.7841/ksbbj.2012.27.6.330
  14. Anti-Obesity Effect of Crataegus Fructus Extract from Chinese Cultivation vol.21, pp.11, 2011, https://doi.org/10.5352/JLS.2011.21.11.1586
  15. Improvement Effect of Artificial Rice Containing Curcuma longa L. Extract on Lipid Parameters in C57BL/6J Mice vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1114
  16. Inhibitory Effect of Ecklonia cava Extracts against Lipase Activity and Stability Effect of Temperature and pH on Their Activity vol.40, pp.7, 2011, https://doi.org/10.3746/jkfn.2011.40.7.969
  17. Effect of Aceriphyllum rossii Ethanol Extract on Lipid Metabolism in Rats Fed a High-Fat Diet vol.40, pp.10, 2011, https://doi.org/10.3746/jkfn.2011.40.10.1411
  18. 견우자의 생리활성 분석과 추출물로부터 항암 활성물질의 분리 vol.27, pp.2, 2017, https://doi.org/10.5352/jls.2017.27.2.225
  19. 약용식물 5종의 용매별 추출물 및 조성물의 생리활성 vol.28, pp.3, 2007, https://doi.org/10.5352/jls.2018.28.3.320
  20. Platycodon grandiflorum Extract Reduces High-Fat Diet-Induced Obesity Through Regulation of Adipogenesis and Lipogenesis Pathways in Mice vol.22, pp.10, 2007, https://doi.org/10.1089/jmf.2018.4370
  21. Antiobesity and Antidiabetic Effects of Portulaca oleracea Powder Intake in High-Fat Diet-Induced Obese C57BL/6 Mice vol.2021, pp.None, 2007, https://doi.org/10.1155/2021/5587848