DOI QR코드

DOI QR Code

Life Table of the Greenbug, Schizaphis graminum (Rondani) (Homoptera: Aphididae) on Barley, Hordeum vulgare L.

보리를 기주로 한 보리두갈래진딧물[Schizaphis graminum (Rondani)]의 생명표

  • Kim, Ji-Soo (Organic Farming Technology Division, Crop Life Safety Department, National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Jang-Ho (Faculty of Biological Resources Science, College of Agriculture and Life Sciences, Institute of Agricultural Science and Technology, Chonbuk National University) ;
  • Kim, Tae-Heung (Faculty of Biological Resources Science, College of Agriculture and Life Sciences, Institute of Agricultural Science and Technology, Chonbuk National University) ;
  • Lee, Sang-Guei (Research Management Division, Research Management Bureau, RDA) ;
  • Yun, Jong-Chul (Organic Farming Technology Division, Crop Life Safety Department, National Institute of Agricultural Science and Technology, RDA)
  • 김지수 (농촌진흥청 농업과학기술원 친환경농업과) ;
  • 이장호 (전북대학교 농업생명과학대학 생물자원과학부) ;
  • 김태흥 (전북대학교 농업생명과학대학 생물자원과학부) ;
  • 이상계 (농촌진흥청 연구개발국 연구관리과) ;
  • 윤종철 (농촌진흥청 농업과학기술원 친환경농업과)
  • Published : 2007.04.30

Abstract

To construct a life table and development model Schizaphis graminum (Rondani), its adult longevity and fecundity were studied at various constant temperatures ranging from 15 to $32.5^{\circ}C$, with $65{\pm}5%$ RH, and a photoperiod of 16L:8D. Adult longevity of the greenbug gradually increased with decreasing temperature below $32.5^{\circ}C$. Total fecundity was not significantly different at all temperatures except at $32.5^{\circ}C$. Daily fecundity gradually increased from $25.0^{\circ}C$. It was 3.6 at $27.5^{\circ}C$ and as temperatures either went down or up, it decreased to 1.4 at $15.0^{\circ}C$ and 0.4 at $32.5^{\circ}C$ Net reproduction rate (Ro) was highest with 47.6 at $25.0^{\circ}C$. The intrinsic rate of increase per day $(r_m)$ and the finite rate of increase per day $({\lambda})$ were highest with 0.4 and 1.5 at $30.0^{\circ}C$, respectively and the doubling time (Dt) was shortest with 0.98 at $32.5^{\circ}C$. The mean generation time (T) was 8.41 at $30.0^{\circ}C$.

보리두갈래진딧물[Schizaphis gramimum (Rondani)]의 성충 발육과 산자수를 $15-32.5^{\circ}C$, 상대습도 $65{\pm}5%$, 광주기 16L:8D 조건에서 조사하고 생명표를 작성하였다. 보리두갈래진딧물의 성충수명은 $32.5^{\circ}C$까지 온도가 높아짐에 따라서 수명이 짧아졌으며, 산자수는 $22.5^{\circ}C$에서 59.9마리로 가장 높았으며, 고온과 저온으로 갈수록 감소하는 경향을 보였다. 이와는 다르게 성충 1마리가 일일 출산하는 산자수는 $27.5^{\circ}C$에서 3.6마리였는데, 온도가 올라감에 따라 증가하다가 $32.5^{\circ}C$에서 산자수가 급격히 감소하여 고온에 의한 영향을 받는 것으로 보인다. 온도가 내려감에 따라 성충 수명이 길어지고, 또한 산자를 낳는 기간도 길어졌다. 일일 산자수는 $22.5^{\circ}C$를 기점으로 온도가 올라가거나 내려감에 따라 감소하였고, 사충률은 온도가 높아질수록 급격히 증가하는 것으로 나타났다. 또한 약충 발육시 사충률과 성충 수명, 산자수를 이용하여 생명표를 작성하였는데 보리두갈래진딧물의 순증가율(Ro)은 $22.5^{\circ}C{\sim}27.5^{\circ}C$에서 가장 높다가 온도가 높아질수록 급격히 감소하였고, 내적자연증가율$(r_m)$$30^{\circ}C$에서 최고치인 0.3887을 나타냈으며, $32.5^{\circ}C$에서 -0.0208을 나타냈다. 배수기간(Dt) 또한 $32.5^{\circ}C$에서 가장 짧았고, 기간증가율$({\lambda})$$32.5^{\circ}C$에서 가장 큰 11.5365였다. 평균세대기간(T)은 온도가 올라감에 따라 짧아져 $32.5^{\circ}C$에서 가장 짧았다.

Keywords

References

  1. Blackman R.L. and V.F. Eastop. 2000. Aphids on the world's crops, an identification and information guide, 2nd edition. John Wiley & Sons Ltd., England
  2. Brooks, H.L. 1989. The greenbug: A pest in wheat. Kansas State Agricultural Experiment Station and Cooperative Extension Service. Entomology 163
  3. Conte, L. 1998. The technique of 'banker plants' for the biological control of Aphis gossypii on cucumber. Informate Agrario
  4. Daniels, N.E. 1960. Evidence of the oversummering of the greenbug (Toxoptera graminum) in the Texas Panhandle. J. Econ. Entomol. 53: 454-455 https://doi.org/10.1093/jee/53.3.454
  5. Drees, B.M. and J. Jackman. 1999. Greenbug: Field guide to Taxas insects. http//insects.tamu.edu/fieldguide/aimgI04
  6. Fischer, S. and A. Leger. 1997. Use of banker plants for biological control of aphids on cucumber in greenhouses. Revue Suisse de Viticulture, d' Arboriculture et d' Horticulture. 29: 119-126
  7. Harvey, T.L. and H.L. Hackerott. 1969. Recognition of a greenbug biotype injurious to sorghum. J. Econ. Entomol. 62: 776-779 https://doi.org/10.1093/jee/62.4.776
  8. Kazuo K. and M. K. Lohar, 1989. Effect of gramine on the fecundity, longevity, and probing behaviour of the greenbug, Schizaphis graminurn (Rondani), Ber. Ohara Inst. landw. BioI., Dkayama Univ. 20: 199-204
  9. Kim, J.S. 2004. Bionomics of aphids on vegetable in the greenhouse. Ph. D. thesis, Chonbuk Nat'l Univ. 80 pp
  10. Kim, Y.H. and J.H. Kim. 2003. Biological control of aphids on cucumber in plastic green houses using banker plants. Korea J. Appl. Entomol. 42: 81-84
  11. Kim, Y.H., J.H. Kim, Y.W. Byeon and B.Y. Choi. 2005. Guide for wse of natural enemies. NIAST. RDA. 198 pp
  12. Kindler, S.D. and D.B. Hays. 1999. Susceptibility of cool-season grasses to greenbug biotypes. J. Agric. Urban Entomol. 16: 235-243
  13. Lee, H.R. 1996. Studies on the preservation and utilization of useful natural enemies for conservative strategies of environment (IPM: Integrated Pests Managements). Department of Agricultural Biology, College of Agriculture, Chungbuk National University. 121-122 pp
  14. Maia, A.H.N., A.J.B. Luiz and C. Campanhola. 2000. Statistical inference on associated fertility life table parameters using Jackknife technique: Computational aspects. J. Econ. Entomol. 93: 511-518 https://doi.org/10.1603/0022-0493-93.2.511
  15. Meyer, J.S., C.G. Igersoll, L.L. MacDonald and M.S. Boyce. 1986. Estimating uncertainty in population growth rates: Jackknife vs bootstrap techniques. Ecology 67: 1156-1166 https://doi.org/10.2307/1938671
  16. Michels Jr, G.J. 1986. Graminaceous North American host plants of the greenbug with notes on biotype. Southwestern Entomologist 11: 55-66
  17. Minks A.K. and P. Harrewijn. 1988. Aphids; their biology, natural enemies and control. vol. C: 65-237
  18. Nuessly, G.S. and R.T. Negata. 2005. Greenbug, Schizaphis graminum (Rondani) (Insecta: Hemiptera: Aphididae). http://edis. ifas.ufl.edu/in634
  19. Qureshi, J.A. and J.P. Michaud. 2005. Interactions among three species of cereal aphids simultaneously infesting wheat. Journal of Insect Science. 5: 13 https://doi.org/10.1093/jis/5.1.13
  20. SAS Institute. 1999. SAS version 8.1 Intitute Cary, N.C
  21. Saxena, P.N. and H.L. Chada. 1971. The greenbug, Schizaphis graminum. I. Mouthparts and feeding habits. Ann. Entomol. Soc. Am. 64: 897-904 https://doi.org/10.1093/aesa/64.4.897
  22. Schoolfield, R.M., P.J .H. Sharpe and C.E. Magnuson. 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction rate theory. J. Theor. BioI. 88: 719-731 https://doi.org/10.1016/0022-5193(81)90246-0
  23. Van Driesche, R.G. and T.S. Bellows Jr. 1995. Biological control. Chapman & Hall. 539 pp
  24. Wagner, T.L., Wu, P.J.H. Sharpe, R.M. Schoolfield and R.N. Coulson. 1984. Modeling insect development rate: A literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77: 208-225 https://doi.org/10.1093/aesa/77.2.208

Cited by

  1. A review of life table applications and an introduction of its application method vol.24, pp.6, 2013, https://doi.org/10.7465/jkdi.2013.24.6.1159