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Fluxon resonance steps in the Bi,SroCaCu,QOg,, single crystals

Myung-Ho Bae and Hu-Jong Lee
Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea

We observed discrete fluxon-flow resonance steps in high magnetic fields in a stack of Josephson
junctions with lateral size of 1.5x17 pm®. The measurement sample was prepared by sandwiching
a stack of Bi2SroCaCusOsy, intrinsic Josephson junctions between two Au electrodes by using the
double-side-cleaving technique. This technique allowed us to isolate the intrinsic J osephson junction
structures from the inductive interference of the basal stack. The resonance steps observed are in
good agreement with the collective Josephson fluxon dynamics that are in resonance with the plasma
oscillation modes inside the stacked Josephson junctions.

PACS numbers:

INTRODUCTION

The discovery of the intrinsic Josephson coupling in
highly anisotropic BisSroCaCusOgy, (Bi-2212) single
crystals has stimulated intensive studies on the fluxon dy-
namics in relation with the inductive inter-junction cou-
pling [1-3]. Since the thickness of CuQ; superconduct-
ing layers of Bi-2212 (0.3 nm) is much thinner [4] than
the London penetration depth A, (a few pm) a strong
inductive inter-junction coupling is expected [5]. Re-
cently, a quasi-one dimensional annular-type mesa, struc-
ture with its width comparable to the Josephson pene-
tration depth A; is employed for the investigation of the
coherent fluxon motion in terms of the inductive coupling
theory.

Most of fluxon dynamics studies to date, however, were
made using mesa structures on the surface of single crys-
tals containing intrinsic Josephson junctions. Due to
strong inter-junction coupling of Josephson fluxons both
in a mesa and the basal stack situated underneath the
mesa, the presence of the basal stack easily distorts the
fluxon-flow characteristics in the mesa itself [9]. In order
to observe more ideal fluxon dynamics as predicted by the
theories, one thus needs to remove the basal stack, while
reducing its width down comparable to Ay as well. In
this study, we removed the basal stack using the double-
side-cleaving technique [6] and examined resonance phe-
nomena in Josephson fluxon dynamics of stacked intrin-
sic Josephson junctions in terms of the inductive coupling
theory.

THEORETICAL BACKGROUND

Resonance phenomena take place in a Josephson junc-
tion between oscillations of the gauge-invariant phase dif-
ference v between the two superconducting layers (i.e.,
the AC Josephson effect) and the electromagnetic field in
the junction. For instance, the Shapiro steps arise from
the resonance between the alternating current (AC) ef-
fect and the applied external microwaves [7]. The Fiske
steps, on the other hand, are the resonance between the

AC effect and the cavity electric-wave resonant modes.
Zero-field steps are the resonance between AC effect and
the oscillatory motion of pinned Josephson vortices with-
out an external field. The fluxon-flow resonance is due
to the resonance between the Josephson vortices induced
by an external field and the cavity electric wave resonant
modes (i.e., plasma oscillation modes) [8]. In this study,
focus is placed on this fluxon-flow resonance steps.

The Swihart velocity, the phase velocity of small-
amplitude electromagnetic oscillation modes in a single
Josephson junction, is given by &=c4/l/s,d. Here, ¢ is
the velocity of light in vacuum; /, €,, and d (=1 + 2))
are the thickness, the relative dielectric constant, and
the effective thickness of the insulating barrier, respec-
tively. A is the London penetration depth of each super-
conducting layer. One combines the Josephson relation
with the Maxwell equation in a Josephson junction to ob-
tain the sine-Gordon equation. For a spatially uniform
v without the dissipative term in the sine-Gordon equa-
tion, one can define the Josephson plasma frequency as
wy=t/Aj=+/2el./hC, where C is the total junction ca-
pacitance and A y=+/AC?/8medJ, is the Josephson pene-
tration depth. Thus, the Swihart velocity is determined
by the Josephson plasma frequency.

We first consider the fluxon resonance states for a sin-
gle Josephson junction. If a fluxon penetrates into the
insulating barrier in a long single Josephson junction of
length L, the phase difference v changes with time with
the frequency of ué/L, where u is the velocity of the
fluxon in units of €. Fluxon velocity increases with in-
creasing the bias currents. In the relativistic luxon ve-
locity limit (u ~ 1), the DC voltage across a junction
becomes V=9¢¢/L, where ¥ is the flux quantum. Since
the fluxon cannot propagate faster than the Swihart ve-
locity, the current-voltage characteristics (IVC) of a sin-
gle long Josephson junction exhibits cut-off voltages. For
multiple fluxons generated in a junction the number of
fluxons per junction is given by HdL/®, (= Ny). Thus,
the resonance voltage step occurs at V,,=n®¢¢/L=cHd,
where H and n are the external field and the number of
fluxons, respectively. The relation can be alternatively
expressed as V,=m®y¢/2L, where m=2n.
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Because of the reflection of fluxons at the edges of a
Josephson junction of length L, the junction behaves like
a string and supports standing-wave modes of the elec-
tromagnetic field inside the junction. For an open-ended
transmission line the standing wave for the nth mode
is e (x,t)=e,entcos(nnz/L), where w,=nnc/L. This
leads to infinite number of self-resonant modes. Lock-
ing of fluxon motion takes place as a self-resonance mode
frequency coincides with a Josephson current frequency
due to the fluxon motion. Since the velocity of a single
fluxon corresponding to the lowest resonant Josephson
mode frequency of ¢/2L is ¢/2 the voltage drop due to
locking of the fluxon motion occurs at ®¢¢/2L. The next
higher resonant voltage is ®,¢/L, which corresponds to
the single-fluxon velocity of € Thus, two resonating volt-
ages exist for a single fluxon in a junction, which is similar
to the Fiske steps in the short-junction limit. When the
Josephson frequency matches with the frequency of one
of the junction modes zero frequency currents appears,
which is the Fiske steps. If an external magnetic field is
applied in parallel with the junction line the Josephson
current must be modulated in the junction line direction,
even in the absence of fluxons, with the resonant voltages
of V,,=n®y¢/2L. This is similar to the fluxon case but
the number of resonating values is infinity. In the case of
fluxon motion, however, fluxons resonate with the junc-
tion modes and the number of resonating voltages is lim-
ited by the number of fluxons as discussed above. Thus,
the resonating frequency values are given by

fm =mc/20,m =1,2,.,2Ny (1)

where Ny is the number of fluxons in a junction. In other
words, fluxons resonate with the Josephson plasma oscil-
lation modes, because ¢ is determined by the Josephson
plasma frequency wy. If the resonating states appear over
the whole multi-layer Josephson junctions at the same
time, the resonating frequency occurs for

fam =men/20,m=1,2,..,2N;,n=1,2,.,.N (2)

where N is the number of junctions and ¢, is the nth-
mode Swihart velocity. If the thickness of superconduct-
ing layers is much thinner than the London penetration
depth, Josephson current of each junction can be cou-
pled with each other by the inductive coupling. This
situation is similar to the coupled harmonic oscillators,
where the characteristic frequency (eigenvalues) can be
obtained by the tri-diagonal matrix with the general so-
lution of positions expressed as the linear combination
of the eigenvectors. In the system of multiple Joseph-
son junctions, we can also set up a tri-diagonal matrix
through the coupled sine-Gordon equation and get the
eigenvalue equation composed of a tri-diagonal matrix.
The induced resonance frequency is give by

o)™ ! (3)
L \/Ylf + XQE[l —cos(mn/(N + 1))]

where m=1,2,..,.2Ny, n=1,2,..,N,
Me=[®odes s/ (2mpoAi je)]/?,

As=y/®o/2mpofeltess + 207 [desf), 1/AF = 1/A5~2/ X%,
tefs = t+2AL tanh[d/(Z)\L)], and depy = A, sinh(d/Ap).
Equating Egs. (2) and (3), we can get the velocity
corresponding to each plasma mode, when k; is equal to
2Ny as in the single-fluxon case as

_ UJJ)\J
/T = 2scos[an/(N + )]

The dimensionless coupling parameter s stands for the
inter-layer coupling strength, which is 0.5 for Bi-2212.

Cn

4)

EXPERIMENTS AND DISCUSSION

Slightly overdoped Bi-2212 single crystals were grown
by the solid-state-reaction method [10]. For fabrication
of the sample a single crystal was glued on a sapphire
substrate using polyimide and were cleaved until opti-
cally clean surface was obtained. Then a 100-nm-thick
Au film was thermally deposited on top of the crystal
to protect the surface from oxidation and contamination
during the further processes. A mesa with a Au layer
of size 1.5x17 pm? was patterned using positive pho-
toresist (Shipley-1805) and Ar-ion-etching. The surface
of patterned mesa was fixed to another sapphire sub-
strate using polyimide and the basal part of the junctions
was cleaved away to prepare a fresh surface, on which
100-nm-thick Au film was deposited immediately. This
double-side-cleaving (DSC) technique allows one to pre-
pare a stack of 1JJs sandwiched between normal-metallic
electrodes without the basal stack. A few-pm-long por-
tion on both ends of stack was etched away to get the
bottom electrodes exposed for c-axis transport measure-
ment. Finally, the Au-extension pads are attached by
photolithography and Ar-ion etching. Using these pro-
cesses a stack of size 1.5x17 um? was prepared. At the
same time we fabricated the mesa structure on the base
single crystal for the reference. The measurements were
made in a two or four-terminal configuration using low
pass filters connected to measurement electrodes. For
the data of two terminal configuration, the contact re-
sistance was subtracted numerically. The magnetic-field
alignment to the plane of junctions is important because
any field misalignment produces pancake vortices on the
junction planes, which in turn act as pinning centers of
Josephson vortices. The magnetic field alignment to the
junction was done in a field of 2 tesla at 60 K with the
alignment resolution of 0.01 degree. The details are de-
scribed elsewhere.

In general, when a DC external magnetic field is ap-
plied in parallel with the planes of long Josephson junc-
tions, the magnetic field penetrates into insulating layer
in forms of fluxons, Josephson vortices. At the same time,
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FIG. 1: Current-voltage characteristics of a stack of 55 mul-
tiple Josephson junctions with varying magnetic fields, show-
ing fluxon-flow characteristics for high magnetic fields below
the shoulder voltages as well as the quasiparticle tunneling
branches for low magnetic fields.

in a c-axis tunneling bias current, the vortices move along
the insulating layer by the Lorenz force. Figure 1 shows
the typical IVC, in different magnetic fields up to 5.2 T,
of a stack of intrinsic Josephson junctions (1.5x17 pm?)
made by the double-side-cleaving technique. The number
of the junctions in the stack was 55 as obtained by divid-
ing the sum gap by the average gap voltage per junction.
The finite resistance is the fluxon-flow resistance of the
field-induced fluxons. As in the figure, in a tesla-range
high magnetic field, all hysteretic quasiparticle branches
merge into a single curve gradually. The shoulder shown
in each curve may correspond to the maximum velocity
of the fluxon-flow motion. It is known that the maxi-
mum fluxon-flow velocity is limited by the propagation
velocity of a corresponding Josephson plasma mode.

One can observe strange steps below the each shoulder
voltage. These steps become more apparent for a higher
field and is seen at the bias current below the return
current 7. Since we applied DC magnetic fields only in
parallel with the junction planes either Shapiro steps nor
zero field steps were observed. In the high field range as
in this study, one cannot observe the pure Fiske steps,
either. Thus, we analyze the data in terms of the fluxon-
flow resonance model.

The system is supposed to have the plasma modes cor-
responding to the number of junctions of 55. Fluxons
generated in a constant dc magnetic field move along the
insulating layer with gradually increasing velocity with
increasing the bias current. If the fluxon-flow velocity
matches with any of the propagation velocity of electro-
magnetic waves, resonating coupling takes place between
the fluxon-flow and the plasma oscillation modes. If the
fluxon-flow velocity exceeds a resonating plasma propa-
gation mode the Cherenkov ration occurs and the fluxon
mode switches to the next resonating plasma propagation
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FIG. 2: Fluxon-flow current-voltage characteristics for H=5.2
T, showing the steps at the mode-switching bias voltages.
Vertical lines indicate the voltage positions where the mode
switching is expected.

mode. This successive resonance switching takes place
with the successive increase of the fluxon-flow velocity
with increasing the bias current (refer to Fig. 2).

For the comparison of the experimental data to the
analytic expectation, we obtain the Swihart velocity ¢
and the magnetic field corresponding the flux quantum.
From the critical current density of 1x10% Acm™2, the
Josephson penetration depth is estimated to be 0.31 pm.
The critical current of 0.28 mA, the return current 8 yA,
and the normal-state resistance of R,=20 2, lead to the
plasma frequency of 0.06 THz. Using co=2nf\;, Swihart
velocity is 1.16 x 10% m/s. And the magnetic field corre-
sponding to one flux quantum is 810 G for the junction
length of 17 pm.

The dispersion relation with ¢y and number of junc-
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FIG. 3: Calculated dispersion relation, for modes with indices
ranging from 1 to 55, of the collective plasma oscillation in a
stack containing 55 intrinsic Josephson junctions.
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tions are shown in the Figure 3. With this relations and
Eq. (4), we compare our 5.2 T data (N;=64) in Figure 2.
The theoretical resonance voltages and observed voltage-
jump values are in qualitative agreement. A larger volt-
age jump is seen for a mode switching in the range of
lower mode indices.

Figure 4 shows the overview of the normalized fluxon-
flow voltages with varying the number of fluxons. The
maximum-voltage shoulder position in the figure is the
7th plasma mode corresponding the velocity of 4.2 x 10°
m/s. In Fig. 4 the discontinuity starts appearing in the
fluxon-flow line for the field higher than 2 T in the current
regime smaller than I..

For a magnetic field of 2.2 T (N;=27) the spacing
between two neighboring fluxons becomes the same as
the diameter [11] of a fluxon itself 2A;. This is close
to the value of 2 T, where the discontinuity starts tak-
ing place in the fluxon-flow line. This indicates that the
dense fluxon lattice is important in observing the reso-
nance fluxon voltage. In the following the variation in
the fluxon lattice over the stack of intrinsic Josephson
junctions will be examined with increasing the fluxon
velocity. One can find the solution of coherent trans-
verse wave modes over a stack using the coupled sine-
Gordon equation. If we set the gauge-invariant phase
difference v, 41,(z,t)=v(z,t) and linearize the sin term,
we get the transverse dispersion relation as w?=w?2[l +
(m2m2X2))/L?). This oscillation generates a collective
transverse electromagnetic fields. This relation is ob-
tained in the limit of vanishing value of Ay in Eq. (3),
corresponding to a weak coupling limit. On the other
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FIG. 4: Fluxon-flow current-voltage characteristics for a dif-
ferent values of applied magnetic fields as a function of bias
voltage normalized by the number of Josephson vortices per
junction, showing the steps at the mode-switching bias volt-
ages. Vertical lines indicate the voltage positions where the
mode switching is expected.

hand, Bi-2212 stacked intrinsic Josephson junctions cor-
respond to the strong coupling limit with the condition
of N > 1 and n=1 in Equation (3). Thus in a stack
consisting of N=55, the n=1 vortex lattice mode is the
rectangular lattice, which is resonant with the collective
rectangular plasma mode. The n=55 mode, on the other
hand, is the triangle lattice mode. Thus, the shape of
the vortex lattice follows the distribution of the eigen
solution of the linerized coupled sine-Gordon equation.
Josephson current across the mth junction is given by

Jm/je = sin(2n Ny @z + gsign{sin[mﬂ'n/(N + 1)1}, (5)

where the sign term is the eigenfuntion. The mode num-
ber n runs from 1 to 55 in this sample stack containing
55 junctions. Different resonant modes can be realized
in the multi-layered Josephson junction when the cur-
rent flow along the ¢ axis. Increasing the bias current,
the fluxon energy along with the fluxon-flow velocity in-
creases. The fluxons attract each other and form a rect-
angular lattice to reduce the fluxon screening current en-
ergy by cancelling the screening current in neighboring
electrodes. The rectangular lattice corresponds to ¢, res-
onant mode, which is stable for velocities ¢, <v < ¢;1.
With gradually increasing the bias current, the rectan-
gular lattice becomes larger to form a collective rectan-
gular lattice, which correspond to the ¢; resonant mode.
Whenever a rectangular lattice is formed by increasing
the bias current, the corresponding resonant mode is ex-
cited and displayed in the IVC as kinks, steps, or voltage
jumps.

CONCLUSION

We could observe the fluxon-flow resonance steps in the
isolated stacks from basal Bi-2212 single crystal in high
magnetic fields by measurements of all stacks without
the basal part of the stack. A dense fluxon state with
the inter-fluxon spacing smaller than A, is needed for
the observation of distinct resonance steps. The width
of stacks, however, is still 5 times larger than A;. More
reduction of the width is required for the reduction of
dimensionality close to one-dimensional limit.
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