THE STABILITY OF THE GENERALIZED SINE FUNCTIONAL EQUATIONS III

  • Received : 2007.10.18
  • Published : 2007.12.31

Abstract

The aim of this paper is to investigate the stability problem bounded by function for the generalized sine functional equations as follow: $f(x)g(y)=f(\frac{x+y}{2})^2-f(\frac{x+{\sigma}y}{2})^2\\g(x)g(y)=f(\frac{x+y}{2})^2-f(\frac{x+{\sigma}y}{2})^2$. As a consequence, we have generalized the superstability of the sine type functional equations.

Keywords