Synthesis of Hectorite by Hydrothemal Method

저온 수열법에 의한 헥토라이트 합성

  • Jang, Young-Nam (Korea Institute of Geoscience and Mineral Resources, Minerals and Materials Processing Division) ;
  • Chae, Soo-Chun (Korea Institute of Geoscience and Mineral Resources, Minerals and Materials Processing Division) ;
  • Ryu, Gyoung-Won (Korea Institute of Geoscience and Mineral Resources, Minerals and Materials Processing Division) ;
  • Kim, You-Dong (Korea Institute of Geoscience and Mineral Resources, Minerals and Materials Processing Division) ;
  • Jang, Hee-Dong (Korea Institute of Geoscience and Mineral Resources, Minerals and Materials Processing Division) ;
  • Bae, In-Kook (Korea Institute of Geoscience and Mineral Resources, Minerals and Materials Processing Division)
  • Published : 2007.03.30

Abstract

Hectorite was synthesized by a two-step hydrothermal process from $Mg(OH)_{2}$, water glass (${\sim}30\;wt%\;SiO_{2}$) and Li-compound at $90{\pm}5^{\circ}C$. The product shows excellent dispersion and swelling properties. The mixture of the starting materials was heated in a glass vessel for the first reaction with continuous stirring and the pH of the solution was adjusted to $6{\sim}8$, resulting in the formation of a precursor of hectorite. The excess salt components were washed out from the resulting slurry and then was matured in the glass vessel for the 2nd reaction. Li compound was added during the reaction. After a 10 h retention, the gel of hectorite was formed. The XRD pattern of the synthesized one was coincided with that of natural hectorite and SEM study revealed uniform grains 50 m in diameter. The d001 basal spacing of the product moved from 12 to $17.4\;{\AA}$ after glycolation treatment. The measured value of CEC and the swelling capacity was 90 cmol/kg and $60{\sim}70\;mL/2\;g$, respectively.

물유리, 수산화 마그네슘, 리튬염을 이용하여 $90{\pm}5^{\circ}C$에서 2단계로 수열반응시켜 팽윤성이 우수한 $12\;{\AA}$ 헥토라이트를 합성하였다. 합성과정은 우선 $SiO_{2}$ 성분을 약 30% 함유한 물유리와 수산화 마그네슘을 화학양론적 조성으로 물에 혼합하고 교반시키면서 pH를 $6{\sim}8$로 유지시켰다. 그 후 수용액을 $90{\pm}5^{\circ}C$의 온도에서 1차로 반응시켜 슬러리 형태의 전구체(precursor)를 제조하였으며 이것을 세척하여 과잉염을 제거하였다. 이때, 리튬 (ie, LiCl)을 팔면체 치환용 이온으로 혼합하였다. 위와 같이 제조된 수용액을 약 10시간 동안 위와 동일한 온도에서 2차로 반응시켜 겔 형태의 헥토라이트를 생성시켰다. 합성된 헥토라이트의 분말 X-선 회절패턴은 자연산 헥토라이트와 일치하였고 FE-SEM으로 관찰한 결과, 직경 50 nm의 균질한 입자로 이루어져 있었다. 이온교환능력과 팽윤성을 측정한 결과, 각각 90 cmol/kg, $60{\sim}70\;ml/2\;g$으로 확인되었으며 에칠렌글리콜 처리 후, 저면간격은 $12\;{\AA}$에서 $17.4\;{\AA}$으로 이동하였다.

Keywords

References

  1. 류경원, 장영남, 최상훈, 채수천, 배인국 (2005a) 딕카이트로부터 바이델라이트의 수열합성 및 반응기구에 관한 연구. 한국지구시스템공학회지 42, 498-505
  2. 류경원, 장영남, 배인국, 채수천, 최상훈 (2005b) 딕카이트로부터 스멕타이트의 수열합성. 한국광물학회지, 17, 267-275
  3. 近藤 三二, 吉賀 愼, 足立 昌義, 兼子 正孝 (1988) 新規合成硅酸酸鹽 ならびに その 製造方法, 特公昭 63-6486, 41-48
  4. 鳥居一雄 (1985) 3-八面體型 スメタイトの工業的 合性法の檢討, 粘土科學, 25, 71-78
  5. 鳥居一雄, 棧賀質, 堀田正已 (1983) ケイ塩酸の合成方法, 特公昭 61-12848
  6. Kloprogge, J.T., Jansen, J.B.H. and Geus, J.W., (1990) Characterization of synthetic Na-beidellite; Clays and Clay Minerals 16, 405-414 https://doi.org/10.1346/CCMN.1969.0160602
  7. Ryu, K.W., Jang, Y.N., Chae, S.C., Bae, I.K. and Choi, S.H. (2006) Hydrothermal synthesis of Smectite from Dickite. Clays and Clay Minerals, 54, 80-86 https://doi.org/10.1346/CCMN.2006.0540110
  8. Torii, K. and Iwasaki, T. (1987) Synthesis of hectorite. Clay Science. 7, 1-6
  9. Torii, K (1996) 합성 smectite의 신전개, 화학기술뉴스, 3(5), 68-73
  10. Vogels, R.J.M.J., Breukelaar, J., Kloprogge, J.T., Jansen, J.B.H. and Geus, J.W. (1997) Hydrothermal crystallization lo ammonium-saponite at $200^{\circ}C$ and autogenous water pressure. Clays and Clay Minerals, 45, 1-7 https://doi.org/10.1346/CCMN.1997.0450101