DOI QR코드

DOI QR Code

Use of n Mathematical Model to Assess the Effects of Dissolved Organic Phosphorus on Species Competition Among the Dinoflagellates Alexandrium tamarense and Gymnodinium catenatum and the Diatom Skeletonema costatum

수치모델을 이용한 와편모조류 Alexandrium tamarense, Gymnodinium catenatum 및 규조류 Skeletonema costatum의 종간 경쟁에 미치는 용존태 유기인의 영향

  • Oh, Seok-Jin (Korea Inter- University institute of Ocean Science, Pukyong National University) ;
  • Yang, Han-Soeb (Korea Inter- University institute of Ocean Science, Pukyong National University) ;
  • Yamamoto, Tamiji (Graduate School of Applied Biological Sciences, Hiroshima University)
  • 오석진 (부경대학교 해양과학공동연구소) ;
  • 양한섭 (부경대학교 해양과학공동연구소) ;
  • 산본민차 (히로시마대학교 생물권과학연구과)
  • Published : 2007.02.28

Abstract

Species competition among the toxic dinoflagellates Alexandrium tamarense and Gymnodinium catenatum and the diatom Skeletonema costatum was simulated using a mathematical model. Prior to the model simulation competition experiments using the three species were conducted to obtain data for validation by the simulation model. S. costatum dominated at a density of ${\sim}10^{4}\;cells/mL$ compared to the other species in the medium with dissolved inorganic phosphorus (DIP). The growth of S. costatum was also stimulated by the addition of dissolved organic phosphorus (DOP), such as uridine-5-monophosphate (UMP) or glycerophosphate (Glycero-P), although this species is unable to take up DOP. This implies that the growth of S. costatum may be supported by DIP, which is hydrolyzed by alkaline phosphatase produced from A. tamarense and G. catenatum. The species competition model was run assuming the environmental conditions of northern Hiroshima Bay, Japan, during spring and summer. G. catenatum increased in cell density and neared the level of S. costatum at the end of the calculation. In the sensitivity analyses by means of doubling and halving parameters, depleted DIP had little effect on the cell density of G. catenatum. However the growth of A. tamarense and S. costatum was significantly affected by changes in the parameter values. These results indicate that if DIP depletion is ongoing, species that have a large phosphate pool in their cells, such as G. catenatum, will predominate in the community.

Keywords

References

  1. Anderson, D.M. and D. Wall. 1978. The potential importance of benthic cysts of Gonyaulax tamarensis and Gonyaulax excavata in initiating toxic dinoflagellate blooms. J. Phycol., 14, 224-234 https://doi.org/10.1111/j.1529-8817.1978.tb02452.x
  2. Anderson, D.M., S.W. Chisholm and C.J. Watras. 1983. Importance of life cycle events in the population dynamics of Gonyaulax tamarensis. Mar. Biol., 76, 179-189 https://doi.org/10.1007/BF00392734
  3. Anderson, D.M., D.M. Kulis and B.J. Binder. 1984. Sexuality and cyst formation in the dinoflagellate Gonyaulax tamarensis: Cyst yield in bath cultures. J. Phycol., 20, 418-425 https://doi.org/10.1111/j.0022-3646.1984.00418.x
  4. Asakawa, M., K. Miyazawa and T. Noguchi. 1993. Studies on paralytic shellfish poison (PSP) toxification of bivalves, in association with appearance of Alexandrium tamarense, in Hiroshima Bay, Hiroshima prefecture. J. Food. Hyg. Soc, Jpn., 34, 50-54 https://doi.org/10.3358/shokueishi.34.50
  5. Asakawa, M., K. Miyazawa, H. Takayama and T. Noguchi. 1995. Dinoflagellate Alexandrium tamarense as the source of paralytic shellfish poison (PSP) contained in bivalves from Hiroshima Bay, Hiroshima Prefecture, Japan. Toxicon, 33, 691-697 https://doi.org/10.1016/0041-0101(94)00177-A
  6. Baba, T., S. Hiyama and T. Tainaka. 2001. Vertical migration of the toxic dinoflagellate Gymnodinium catena tum and toxicity of cultures oyster in Senzaki Bay, Yamaguchi Prefecture. Bull. Plankton Soc. Japan, 48, 95-99
  7. Boyer, G.L., J.J. Sullivan, R.J. Andersen, P.J. Harrison and F.J.R. Taylor. 1987. Effects of nutrient limitation on toxin production and composition in the marine dinoflagellate Protogonyaulax tamarensis. Mar. Biol., 96, 123-128 https://doi.org/10.1007/BF00394845
  8. Cullen, J.J., X. Yang and H.L. MacIntyre. 1992. Nutrient limitation of marine photosynthesis. In: Primary Productivity and Biogeochemical Cycles in the Sea. Falkowski, P.G. and A. Woodhead, eds. Plenum Press, New York, 69-88
  9. Droop, M.R. 1973. Some thoughts on nutrient limitation in algae. J. Phycol., 9, 264-272
  10. Dugdale, R.C. 1967. Nutrient limitation in the sea: Dynamics, identification, and significance. Limnol. Oceanogr., 12, 685-695 https://doi.org/10.4319/lo.1967.12.4.0685
  11. Dugdale, R.C., B.H. Jones Jr., J.J. MacIsaac and J.J. Goering. 1981. Adaptation of nutrient assimilation. Can. Bull. Fish. Aquat. Sci., 210, 234-250
  12. Fraga, S., S.M. Gallager and D.M. Anderson. 1989. Chain-formating dinoflagellates: An adaption to red tides. In: Red Tides. Okaichi, T., D.M. Anderson and T. Nemoto, eds. Elsevier, New York, 281-284
  13. Fraga, S. and A. Bakun. 1993. Global climate change and harmful algal blooms: the example of Gymnodinium catena tum on the Galicia coast. In: Toxic Phytoplankton Blooms in the Sea. Smayda, T.J. and Y. Shimizu, eds. Elsevier, New York, 59-64
  14. Guillard, R.R.L. and J.H. Ryther. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol., 8, 229-239 https://doi.org/10.1139/m62-029
  15. Guillard, R.R.L. and P.E. Hargraves. 1993. Strichochrysis immobilis is a diatom, not a chrysophyte. Phycologia, 32, 234-236 https://doi.org/10.2216/i0031-8884-32-3-234.1
  16. Guillard, R.R.L. 1995. Culture methods. In: Manual on Harmful Marine Microalage. Hallegraeff, G.M., D.M. Anderson and A.D. Cembella, eds. UNESCO, Paris, 45-62
  17. Hada, Y. 1967. Protozoan plankton of the Inland Sea, Setonaikai. I. The mastigophora. Bull. Suzugamine Women's Coll., Nat. Sci., 13, 1-26
  18. Hein, M., M.F. Pedersen and K. Sand-Jensen. 1995. Size-dependent nitrogen uptake in micro- and macroalgae. Mar. Ecol. Prog. Ser., 118, 247-253 https://doi.org/10.3354/meps118247
  19. Hiroshima Prefecture. 1995. Report to observation of shellfish poisoning, 1994. Hiroshima Prefecture, 1-5
  20. Hodson, R.E., A.E. Maccubbin and L.R. Pomeroy. 1981. Dissolved adenosine triphosphate utilization by freeliving and attached bacterioplankton. Mar. Biol., 64, 43-51 https://doi.org/10.1007/BF00394079
  21. Ikeda, T., S. Matsuno, S. Sato, T. Ogata, M. Kodama, Y. Fukuyo and H. Takayama. 1989. First report on paralytic shellfish poisoning caused by Gymnodinium catena tum (Dinophyceae) in Japan. In: Red Tides. Okaichi, T., D.M. Anderson and T. Nemoto, eds. Elsevier, New York, 411-414
  22. Keller, M.D., R.C. Selvin, W. Claus and R.R.L. Guillard. 1987. Media for the culture of oceanic ultraphytoplankton. J. Phycol., 23, 633-638 https://doi.org/10.1111/j.1529-8817.1987.tb04217.x
  23. Kim, D.I., T. Matsubara, S.J. Oh, Y. Shimasaki, Y. Oshima and T. Honjo. Effects of nitrogen and phosphorus sources on utilization and growth kinetics of the harmful dinoflagellate Cochlodinium polykrikoides isolated from Yatsushiro Sea, Japan. Nippon Suisan Gakkaishi
  24. Koroleff, F. 1983. Determination of phosphorus. In: Methods of sea water analysis. Grasshoff, K., M. Ehrhardt and K. Kremling, eds. Verlag Chemie, Weinheim, 162-173
  25. Kuenzler, E.J. 1970. Dissolved organic phosphorus excretion by marine phytoplankton. J. Phycol., 6, 7-13
  26. Langdon, C. 1987. On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton. Part I. A comparative study of the growth-irradiance relationship of three marine phytoplankton species: Skeletonema costatum, Olisthodiscus luteus and Gonyaulax tamarensis. J. Plankton Res., 9, 459-482 https://doi.org/10.1093/plankt/9.3.459
  27. Li, H., M.J. Veldhuis and A.F. Post. 1998. Alkaline phosphatase activities among planktonic communities in the northern Red Sea. Mar. Ecol. Prog. Ser., 173, 107-115 https://doi.org/10.3354/meps173107
  28. Lippemeier, S., D.M.F. Frampton, S.J. Blackburn, S.C. Geier and A.P. Negri. 2003. Influence of phosphorus limitation on toxicity and photosynthesis of Alexandrium minutum (Dinophyceae) monitored by in-line detection of variable chlorophyll fluorescence. J. Phycol., 38, 320-331
  29. Matsuoka, K. and Y. Fukuyo. 1994. Geographical distribution of the toxic dinoflagellate Gymnodinium catenatum Graham in Japanese coastal waters. Bot. Mar., 37, 495-503 https://doi.org/10.1515/botm.1994.37.6.495
  30. Matsuyama, Y. 2003. Physiological and ecological studies on harmful dinoflagellate Heterocapsa circularisquama - II Clarification on toxicity of H. circularisquama and its mechanisms causing shellfish kills. Bull. Fish. Res. Agen., 9, 13-117
  31. Morel, F.M.M. 1987. Kinetics of nutrient uptake and growth in phytoplankton. J. Phycol., 23, 137-150
  32. Nishioka, J., Y. Wada and Y. Imanishi. 1993. On the occurrences of Gymnodinium catenatum (Dinophyceae) in Kumihama Bay. Bull. Kyoto. Inst. Ocean. Fish., 16, 43-49
  33. Oh, S.J., T. Yamamoto, Y. Kataoka, O. Matsuda, Y. Matsuyama and Y. Kotani. 2002. Utilization of dissolved organic phosphorus by the two toxic dinoflagellate: Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae). Fish. Sci., 68, 416-424 https://doi.org/10.1046/j.1444-2906.2002.00440.x
  34. Oh, S.J. and Y.H. Yoon. 2004. Effects of water temperature, salinity and irradiance on the growth of the toxic dinoflagellate, Gymnodinium catena tum (Graham) isolated from Yeosuhae Bay, Korea. Algae, 19, 293-301 https://doi.org/10.4490/ALGAE.2004.19.4.293
  35. Oh, S.J., Y. Matsuyama, T. Yamamoto, M. Nakajima, H. Takatsuzi and K. Hujisawa. 2005a. Recent developments and causes of harmful dinoflagellate blooms in the Seto Inland Sea - Ecological importance of dissolved organic phosphorus (DOP). Bull. Coast. Oceanogr., 43, 85-95
  36. Oh, S.J., Y.H. Yoon, T. Yamamoto and Y. Matsuyama. 2005b. Alkaline phosphatase activity and phosphatase hydrolyzable phosphorus for phytoplankton in Hiroshima Bay, Japan. Ocean Sci. J., 40, 183-190 https://doi.org/10.1007/BF03023517
  37. Oh, S.J., T. Yamamoto and Y.H. Yoon. 2006. Uptake and excretion of dissolved organic phosphorus by two toxic dinoflagellates, Alexandrium tamarense Lebour (Balech) and Gymnodinium catenatum Graham. J. Fish. Sci. Technol., 9, 30-37 https://doi.org/10.5657/fas.2006.9.1.030
  38. Paasche, E. 1973. Silicon and the ecology of marine plankton diatoms. II. Silicate-uptake kinetics in five diatom species. Mar. Biol., 19, 262-269 https://doi.org/10.1007/BF02097147
  39. Provasoli, L., K. Shiraishi and J.R. Lance. 1959. Nutritional idiosyncrasies of Artemia and Tigriopus in monoxenic culture. Ann. N.Y. Sci., 77, 250-261 https://doi.org/10.1111/j.1749-6632.1959.tb36905.x
  40. Smayda, T.J. 1990. Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic. In: Toxic Marine Phytoplankton, Graneli, E., B. Sundstrom, L. Edler and D.M. Anderson, eds. Elsevier, New York, 29-40
  41. Strickland, J.D.H. and T.R. Parsons. 1972. A Practical Handbook of Seawater Analysis, 2rd ed. Bulletin of Fisheries Research Board of Canada, 167, 1-310
  42. Suzumura, M., K. Ishikawa and H. Ogawa. 1998. Characterization of dissolved organic phosphorus in coastal seawater using ultrafiltration and phosphohydrolytic enzymes. LimnoI. Oceanogr., 43, 1553-1564 https://doi.org/10.4319/lo.1998.43.7.1553
  43. Takasugi, A., H. Noguchi and S. Yasuda. 1998. Wind induced vertical circulation and distribution of resting cysts of the toxic plankton in sediments in Hiroshima Bay. Bull. Jap. Soc. Fish. Oceanogr., 62, 187-198
  44. Tarutani, K. and T. Yamamoto. 1994. Phosphate uptake and growth kinetics of Skeletonema costatum isolated from Hiroshima Bay. J. Fac. AppI. Biol. Sci., 33, 59-64
  45. Tarutani, K. 1997. Ecophysiological studies on the population dynamics of toxic dinoflagellate Alexandrium tamarense. Ph.D. Thesis, University of Hiroshima, Higashi-Hiroshima, Japan, 1-119
  46. Yamaguchi, M. 1994. Growth characteristics of the harmful dinoflagellates, Chattonella antiqua and C. marina and several diatoms. Reports on the Development of the Ecological Regulations of HABs. Nansei Regional Fisheries Laboratory, Hiroshima, 55-70
  47. Yamaguchi, M. 1999. Growth physiology of Heterocapsa circularisquama. Bull. Plankton Soc. Japan, 46, 171-172
  48. Yamaguchi, M. and S. Itakura. 1999. Nutrition and growth kinetics in nitrogen- or phosphorus-limited cultures of the noxious red tide dinoflagellate Gymnodinium mikimotoi. Fish. Sci., 65, 367-373 https://doi.org/10.2331/fishsci.65.367
  49. Yamamoto, T. and K. Tarutani. 1996. Growth and phosphate uptake kinetics of Alexandrium tamarense from Mikawa Bay, Japan. In: Harmful and Toxic Algal Blooms. Yasumoto, T., Y. Oshima and Y. Fukuyo, eds. UNESCO, Paris, 293-296
  50. Yamamoto, T. and K. Tarutani. 1997. Effects of temperature, salinity and irradiance on the growth of toxic dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, Japan. Jpn. J. Phycol. (Sorui), 45, 95-101
  51. Yamamoto, T. and K. Tarutani. 1999. Growth and phosphate uptake kinetics of the toxic dinoflagellate Alexandrium tamarense from Hiroshima Bay in the Seto Inland Sea, Japan. Phycol. Res., 47, 27-32 https://doi.org/10.1111/j.1440-1835.1999.tb00280.x
  52. Yamamoto, T., T. Hashimoto, K. Tarutani and Y. Kotani. 2002a. Effects of winds, tides and river water runoff on the formation and disappearance of the Alexandrium tamarense bloom in Hiroshima Bay, Japan. Harmful Algae, 1, 301-312 https://doi.org/10.1016/S1568-9883(02)00029-X
  53. Yamamoto, T., S.J. Oh and Y. Kataoka. 2002b. Effect of temperature, salinity and irradiance on the growth of the toxic dinoflagellate Gymnodinium catena tum (Dinophyceae) isolated from Hiroshima Bay, Japan. Fish. Sci., 68, 356-363 https://doi.org/10.1046/j.1444-2906.2002.00433.x
  54. Yamamoto, T., S.J. Oh and Y. Kataoka. 2004. Growth and uptake kinetics for nitrate, ammonium and phosphate by the toxic dinoflagellate Gymnodinium catena tum isolated from Hiroshima Bay. Fish. Sci., 70, 108-115 https://doi.org/10.1111/j.1444-2906.2003.00778.x

Cited by

  1. The Importance of Dissolved Organic Nutrients on the Interspecific Competition between the Harmful Dinoflagellate Cochlodinium polykrikoides and the Diatom Skeletonema sp. vol.19, pp.4, 2014, https://doi.org/10.7850/jkso.2014.19.4.232