일사 저하에 대한 벼의 형태적 특성 및 광합성 반응 변화

Morphological and Photosynthetic Responses of Rice to Low Radiation

  • Yang, Woon-Ho (National Institute of Crop Science, RDA) ;
  • Peng, Shaobing (International Rice Research Institute) ;
  • Dionisio-Sese Maribel L. (University of the Philippines)
  • 발행 : 2007.03.31

초록

일사 저하에 따른 벼의 형태적 변화와 광합성 특성 변화를 평가하기 위하여, 필리핀 소재 국제미작연구소(IRRI)에서 3품종을 이용하여 분얼기, 생식생장기, 등숙기에 약 40% 차광 처리하고 자연광 처리를 두어 비교한 결과는 다음과 같다. 1. 차광 조건에서 벼는 단위 엽면적 및 엽록소계(SPAD) 측정값 증가, 엽신으로의 건물중 분배비율 증가 등 일조 부족에 대한 적응 형태를 나타내었으나, 분얼이 지연되고 건물 생산량이 감소하는 특징을 보였다. 2. 차광 조건에서 생육한 벼는 자연광 조건에서 생육한 벼에 비하여 탄소동화속도가 늦었으나 조직 내 이산화탄소의 농도는 높게 유지되어, 차광 내 벼의 광합성이 낮았던 것은 광합성 기질인 이산화탄소의 제한이 아니고 photosystem의 전자전달 활성의 약화에 기인된 것으로 판단되었다. 3. 차광 조건에서 생육한 벼를 자연광에 1일간 노출시켜 순화한 후 측정한 최대 광합성과 photosynthetic photon flux density에 대한 광합성 반응은 자연광에서 생육한 벼의 광합성 반응과 차이를 보이지 않아, 차광 조건에서 생육한 벼는 자연광에서 생육한 벼 수준의 잠재 광합성 능력을 유지하고 있었으며, 차광에서의 광합성 저하는 단순하게 일사량 저하에 의한 현상이었다. 4. 분얼기간 동안 차광 조건에서 생육하고 유수형성기 이후 자연광에 노출되어 생육한 벼는 자연광 조건에서 생육한 벼에 비하여 유수형성기부터 출수기까지의 SPAD 값의 증가 정도가 적으며, 엽신 질소 함량의 감소 정도가 크고, $2,000\;{\mu}mol\;m^{-2}s^{-1}$ 이상으로 강한 광 조건에서는 광합성이 감소하는 경향을 보여, 일조 부족에 적응한 벼는 photoinhibition 정도가 큰 것으로 생각된다. 5. 벼 수량은 자연광 처리에 비하여 유수형성기$\sim$출수기 차광에서는 수당영화수와 포트당 영화수의 감소에 의하여, 출수기$\sim$성숙기 차광에서는 등숙비율의 저하에 의하여 감소하였다.

Light is an environmental component inevitably regulating photosynthesis and photo-morphogenesis, which are involved in the plant growth and development. Studies were conducted at the International Rice Research Institute, Philippines in 2004 and 2005, with aims to investigate 1) morphological responses of rice plants to low radiation, 2) morphological alteration of shade-grown plants when exposed to high light intensity, and 3) photosynthetic responses of shade-grown rice plants. Reduction in solar radiation by 40% induced increases in the area on a single leaf basis, biomass partitioning to leaves, and chlorophyll meter readings but brought about retardation of tiller development and decrease in above-ground biomass production of rice varieties. When the shade-grown plants from two weeks of transplanting to panicle initiation were exposed to full solar radiation after panicle initiation, they demonstrated less increase in chlorophyll meter readings and more decrease in leaf nitrogen concentrations from panicle initiation to flowering than control plants that were grown under the ambient solar radiation for whole growth period after transplanting. Shade-grown rice plants exhibited lower carbon assimilation rates but higher internal $CO_2$ concentrations on a single leaf basis than control plants, when measurements for shade-grown rice plants were made under the shading treatments. But when the measurements for shade-grown plants were made under the full solar radiation, light-saturated carbon assimilation rates were similar to control plants. Response of photosynthetic rates to varying light intensities was not considerably different between shading treatments and control. Yield reduction was observed in the shading treatments from panicle initiation to flowering and from flowering to physiological maturity, mainly by less spikelets per panicle and poor grain filling, respectively.

키워드

참고문헌

  1. Biswas, P. K. and V. Salokhe. 2002. Effects of N rates, shading, tiller separation, and plant density on the yield of transplanted rice. Tropical Agric. 79(3) : 168-172
  2. Bremner, J. M. and C. S. Mulvaney. 1982. Nitrogen-Total. pp. 595-624. In : Page A. L. et al. (ed.) Methods of soil analysis, Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI
  3. Chowdhury, P. K., M. Thangaraj, and M. Jayapragasam. 1994. Biochemical changes in low.irradiance tolerant and suscep-tible rice cultivars. Biologia Plantarium. 36(2) : 237-242 https://doi.org/10.1007/BF02921092
  4. Dobermann, A., D. Dawe, R. P. Roetter, and K. G. Cassman. 2000. Reversal of rice yield decline in a long-term conti. nuous cropping experiment. Agron. J. 92(4) : 633-643 https://doi.org/10.2134/agronj2000.924633x
  5. Evans, L. T. and S. K. De Datta. 1979. The relationship be­tween irradiance and grain yield of irrigated rice in the tropics, as influenced by cultivar, nitrogen fertilizer appli. cation and month of planting. Field Crops Res. 2 : 1-17 https://doi.org/10.1016/0378-4290(79)90002-9
  6. Gibson, K. D., A. J. Fischer, and T. C. Foin. 2004. Compensatory responses of late watergrass (Echinochloa phyllopogon) and rice to resource limitations. Weed Sci. 52(2) : 271-280 https://doi.org/10.1614/WS-03-103R
  7. Islam, M. S. and J. I. L. Morison. 1992. Influence of solar-radiation and temperature on irrigated rice grain.yield in Bangladesh. Field Crops Res. 30(1-2) : 13-28 https://doi.org/10.1016/0378-4290(92)90052-B
  8. Ji, B. and D. Jiao. 2001. Photoinhibition and photooxidation in leaves of indica and japonica rice under different tem­perature and light intensities. Acta Botanica Sinica. 43(7) : 714-720
  9. Jiao, D. and X. Li. 2004. Cultivar differences in photosynthetic tolerance to photooxidation and shading in rice (Oryza sativa L.). Photosynthetica. 39(2) : 167-175 https://doi.org/10.1023/A:1013758504857
  10. Kim, K. S., S. K. Kim, B. L. Huh, and K. M. Yoon. 1991. Effects of shading at heading stage on yield components of rice. Korean J. Crop Sci. 36(2) : 127-133
  11. Kobata, T., M. Sugawara, and S. Takatu. 2000. Shading during the early grain filling period does not affect potential grain dry matter increase in rice. Agron. J. 92(3) : 411-417 https://doi.org/10.2134/agronj2000.923411x
  12. Krishnan, P. and A. V. S. Rao. 2005. Effects of genotype and environment in seed yield and quality of rice. J. Agric. Sci. 143 : 283-292 https://doi.org/10.1017/S0021859605005496
  13. Liu, J., B. Qin, Z. Liu, and W. Yang. 2004. Diurnal photo­synthesis and photoinhibition of rice leaves with chlorophyll fluorescence. Acta Eotanica Sinica. 46(5) : 552-559
  14. Makino, A., T. Sato, H. Nakano, and T. Mae. 1997. Leaf photo-synthesis and nitrogen allocation in rice under different irradiance. Planta. 203(3) : 390-398 https://doi.org/10.1007/s004250050205
  15. Nakano, H. 2000. Effect of early stage shading of direct-seeded rice on growth and yield components. Jpn. J. Crop Sci. 69(2) : 182-188 https://doi.org/10.1626/jcs.69.182
  16. Peng, S., J. Huang, J. E. Sheehy, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeno, G. S. Khush, and K. G. Cassman. 2004. Rice yield decline with higher night temperature from global warming. PNAS. 101(27) : 9971.9975
  17. Samarajeewa, K. B. D. P., N. Kojima, J. Sakagami, and W. A. Chandanie. 2005. The effect of different timing of top dressing of nitrogen application under low light intensity on the yield of rice (Oryza sativa L.). J. Agron. Crop Sci. 191(2) : 99-105 https://doi.org/10.1111/j.1439-037X.2004.00132.x
  18. Tamaki, M. and Y. Yamamoto. 1997. Effects of shading and nitrogen fertilizer levels on flag leaf emergence rate and tillering of rice plants, with special reference to the turning point of the leaf emergence rate. Jpn. J. Crop Sci. 66(1) : 29-34 https://doi.org/10.1626/jcs.66.29
  19. Viji, M. M., M. Thangaraj, and M. layapragasam. 1997. Effect of low light on photosynthetic pigments, photochemical efficiency and Hill reaction in rice (Oryza sativa). J. Agron. Crop Sci.-Zeitschrift fur Acker und Pflanzenban. 178(4) : 193-196 https://doi.org/10.1111/j.1439-037X.1997.tb00490.x
  20. Watanabe, S., Y. Hatanaka, and K. Inada. 1980. Development of a digital chlorophyll meter. I. Structure and performance. Jpn. J. Crop Sci. 49(special issue) : 89-90
  21. Xin, Y., L. Feng, Y. Xu, D. liao, L. Ki, and T. Kuang. 2000. Effects of high light stress on chlorophyll-protein complexes of two subspecies of rice. Acta Botanica Sinica. 42(12) : 1278-1284
  22. Yao, Y., Y. Yamamoto, T. Yoshida, Y. Nitta, and A. Miyazaki. 2000. Response of differentiated and degenerated spikelets to top-dressing, shading and day/night temperature treatments in rice cultivars with large panicles. Soil Sci. Plant Nutr. 46(3) : 631-641 https://doi.org/10.1080/00380768.2000.10409128
  23. Yamamoto, Y., H. Kurokawa, Y. Nitta, and T. Yoshida. 1995. Varietal difference of tillering response to shading and nitrogen levels in rice plant - Comparison between high tillering semi-dwarf indica and low tillering japonica. Jpn. J. Crop Sci. 64(2) : 227-234 https://doi.org/10.1626/jcs.64.227
  24. Yoshida, S. 1981. Fundamentals of rice crop science. Int. Rice Res. Inst., Manila, Philippines. 269 p