DOI QR코드

DOI QR Code

전진비행하는 회전익기 로터의 평균 유입류 예측기법 연구

Investigation on Prediction Methods for a Rotor Averaged Inflow in Forward Flight

  • 황창전 (한국항공우주연구원 KHP개발실) ;
  • 정기훈 (한국항공우주연구원 KHP개발실)
  • Published : 2007.02.28

Abstract

동 연구에서는 전진비행하는 로터의 평균 유입류 예측기법 중 Drees 선형모델, 몇가지 변형된 형태의 Mangler & Squire 모델을 서로 비교하여 각 유입류 모델의 특성을 알아내고, KARI 자체 자유후류기법 코드의 해석결과를 함께 비교하여 각 유입류 예측기법의 특성을 파악하였다. 각 예측기법의 비교를 위해 유입류 실험치가 존재하는 로터에 대하여 전진비 0.15, 0.23 및 0.30의 3가지 비행조건을 적용하여 예측한 결과를 비교 분석하였다. Drees 모델의 경우 비교적 실험치에 근접하게 예측하나, 선형모델의 한계로 인해 유입류의 비균일성을 모델링하기에는 미흡하며, Mangler & Squire 모델은 끝단을 제외하고는 비교적 실험치에 근접하게 예측함을 알 수 있었으며, KARI의 자유후류기법은 유입류의 비균일성을 매우 잘 예측하나, 동체에 의한 올려흐름 효과, 후퇴부에서의 동적실속 효과 등의 추가 고려가 필요함을 알 수 있었다.

Prediction methods for a rotor averaged inflow in forward flight are investigated in this study. The investigated methods are Drees linear inflow model, Mangler & Squire model and free vortex wake(FVW) method. Predictions have been performed for a four-blade rotor operating at three different advance ratios i.e. 0.15, 0.23 and 0.30, at which experimental data are available. According to results, Drees model has a limitation for the inflow non-uniformity prediction due to an inherent linear characteristics. Mangler & Squire model has a reasonable accuracy except the disk edge region. KARI FVW method has very good accuracy and has better accuracy than the other FVW method especially in inboard region. However, there are some discrepancies in retreating side due to the dynamic stall effect and in near hub region due to the fuselage upwash effect.

Keywords

References

  1. Glauert, H., 'A General Theory of the Autogiro', ARC R&M 1111, 1926
  2. Drees, J. M., 'A Theory of Airflow Through Rotors and Its Application to Some Helicopter Problems', J. Helicoopter Assoc. Great Britain, 3(2), July-Sept
  3. Mangler, K. W. and Squire, H. B., 'The Induced Velocity Field of a Rotor', ARC R&M 2642, 1950
  4. Bramwell, A R. S., Helicopter Dynamics, Edward Arnold, London, 1976
  5. Stepniewski, W. Z. and Keys, C. N., Rotary-Wing Aerodynamics, Dover, New York, Part 1, Chapter 5
  6. Landgrebe, A. J., 'The Wake Geometry of a Hovering Helicopter Rotor and Its Influence on Rotor Performance,' J. American Helicopter Soc., 17, (4), Oct., 1972, pp. 3-15 https://doi.org/10.4050/JAHS.17.3
  7. Kocurek, J. D. and TangIer, J. L., 'A Prescribed Wake Lifting Surface Hover Performance Analysis', J. American Helicopter Soc., 22, (1), Jan., 1977, pp. 24-35 https://doi.org/10.4050/JAHS.22.24
  8. Felker, F. F., Quackenbush, T. R., Bliss, D. B., and Light, J. L., 'Comparisons of Predicted and Measured Rotor Performance Using a New Free Wake Method,' Proc. 44th Forum of the American Helicopter Society, Washington, D.C., June, 1988
  9. Clark, D. R. and Leiper, A. C., 'The Free Wake Analysis a Method for The Prediction of Helicoper Roter Hovering Performance,' J. American Helicopter Soc., 15, (1), Jan., 1970, pp. 3-11 https://doi.org/10.4050/JAHS.15.3
  10. Rosen, A. and Grabe, A., 'Free Wake Model of Hovering Rotors Having Straight or Curved Blades,' J. American Helicopter Soc., 33, (3), July, 1988, pp. 11-19 https://doi.org/10.4050/JAHS.33.11
  11. Bagai, A., Leishman, J. G., 'Rotor Free-Wake Modeling Using a Pseudo-Implicit Technique Including Comparisons with Experimental Data', J. American Helicopter Soc., 40, (3), July, 1995, pp. 29-41 https://doi.org/10.4050/JAHS.40.29
  12. Baron, A., Boffadossi M., 'Unsteady Free Wake Analysis of Closely Interacting Helicopter Rotors,' Proc. 19th European. Rotorcraft Forum, Cernobbio (Como), Italy, Sept. 14-16, 1993
  13. Scully, M. P., 'Computation of Helicopter Rotor Wake Geometry and Its Influence on Rotor Harmonic Airloads,' MIT ASRL TR 178-1, March, 1975
  14. Lee, D. J. and Na, S. U., 'High Resolution Free Vortex Blob Method for Highly Distorted Vortex Wake Generated from a Slowly Starting Rotor Blade in Hover', 21st European Rotorcraft Forum, St. Petersburg, Russia, Aug, 30-Sept. 1, 1995
  15. Lee, D. J. and Na, S. U., 'Numerical Simulation of Wake Structure Generated by Rotating Blades Using a Time-Marching Free-Blob Method', European J. Fluid Mech. -B/Fluids, 17 (4), pp. 1-13
  16. Peters, D. A., Boyd, D. D. and He, C. J., 'Finite-State Induced-Flow Model for Rotors in Hover and Forward Flight', 43rd Annual Forum of American Helicopter Soc., St. Louis, MO, May 18-20, 1987
  17. Peters, D. A and He, C. J., 'Finite-State Induced-Flow Models Part II: Three-Dimensional Rotor Disk', J. of Aircraft, 32 (2), March-April, pp. 323-333. 1995 https://doi.org/10.2514/3.46719
  18. 남화진, 박영민, 권오준, '바정렬 적응 격자계를 이용한 비정상 로터-동체 공력 상호작용 모사', 한국항공우주학회지, 제 33권 제 2호, 2005, pp. 11-21
  19. Leishman, J. G., Principles of Helicopter Aerodynamics, 1st Edition, Cambridge University Press 2000
  20. Chung, K., Hwang, C., Lee, D.J. and Yim J., 'Numerical Investigation on a Rotor Tip-Vortex Instability in Very Low Advance Ratio Flight,' KSAS International Journal, Vol. 6, (2), pp. 84-96, 2005
  21. Elliott, J.W., Althoff, S.L. and Sailey, R.H., 'Inflow Measurement Made with a Laser Velocimeter on a Helicopter Model in Forward Flight-${\mu}$=0.15', NASA TM 100541, 1988
  22. Elliott, J. W., Althoff, S. L. and Sailey, R. H., 'Inflow Measurement Made with a Laser Velocimeter on a Helicopter Model in Forward Flight-${\mu}$=0.23', NASA TM 100542, 1988
  23. Elliott, J. W., Althoff, S. L. and Sailey, R. H., 'Inflow Measurement Made with a Laser Velocimeter on a Helicopter Model in Forward Flight-${\mu}$=0.30', NASA TM 100543, 1988