DOI QR코드

DOI QR Code

Isolation of Total RNA from a Freshwater Green Alga, Zygnema cruciatum, Containing High Levels of Pigments

  • Published : 2007.06.01

Abstract

Conventional methods for the isolation and purification of mRNA from Zygnema were unsuccessful because of its high amount of pigments and RNA interactive molecules. In particular, pigments were difficult to remove using conventional protocols because they interacted with RNA during pulverization of the materials. This resulted in total degeneration of RNA in two to three hours. To alleviate this problem, we developed an isolation method that utilized DEAE-cellulose resin. The pigments bound to DEAE anion exchange resin and separated from the RNA. Purified total RNA showed an yield of 50 μg per 100 mg of tissue with this method. The amplified 2nd strand cDNA was distributed 300 bp and over.

Keywords

References

  1. Birtlc S. and Kranner I. 2006. Isolation of high-quality RNA from polyphenol-polysaccharide-and lipid-rich seeds. Phytochem. Anal. 17: 144-148 https://doi.org/10.1002/pca.903
  2. Bischoff H. and Bold H.C. 1963. Phycological studies IV. Some soil algae from Enchanted Rock and related algal species. Univ. Tex. Publ. No. 6318, Austin
  3. Chomczynski P. and Sacchi N. 1987. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159
  4. Eckhart L., Bach J., Ban J. and Tschachler. 2000. Melanin binds reversibly to thermostable DNA polymerase and inhibits its activity. Biochem. Biophys. Res. Commun. 271: 726-730 https://doi.org/10.1006/bbrc.2000.2716
  5. Gao J., Liu J., Li B. and Li Z. 2001. Isolation and purification of functional total RNA from blue-grained Wheat endosperm tissues containing high levels of starches and flavonoids. Plant Mol. Biol. Rep. 19: 185a-185i https://doi.org/10.1007/BF02772163
  6. Hawes I. 1989. Filamentous green algae in freshwater streams on Signy Island, Antarctica. Hydrobiologia 172: 1-18 https://doi.org/10.1007/BF00031608
  7. Kim G.H., Yoon M.C., West, J.A., Klochkova T.A. and Kim S.H. 2007. Possible surface carbohydrates involved in signaling during conjugation process in Zygnema cruciatum monitored with FITC-lectins (Zygnemataceae, Chlorophyta). Phycol. Res. 55: 135-142 https://doi.org/10.1111/j.1440-1835.2007.00456.x
  8. Lagonigro M.S., Cecco L.D., Carninci P., Stasi D.D., Ranzani T., Rodolfo M. and Gariboldi M. 2004. CTAB-Urea method purifies RNA from melanin for cDNA microarray analysis. Pigment Cell Res. 17: 312-315 https://doi.org/10.1111/j.1600-0749.2004.00155.x
  9. Meisel L., Fonseca B., Gonzalez S., Baeza-Yates R., Cambiazo V., Campos R., Gonzalez M., Orellana A., Retamales J. and Silva H. 2005. A rapid and efficient method for purifying high quality total RNA from peaches (Prunus persica) for functional genomics analyses. Biol. Res. 38: 83-8
  10. Price K. and Linge C. 1999. The presence of melanin in genomic DNA isolated from pigmented cell lines interferes with successful polymerase chain reaction: a solution. Melanoma Res. 9: 5-9 https://doi.org/10.1097/00008390-199902000-00002
  11. Salter MG. and Conlon HE. 2007. Extraction of plant RNA. Methods Mol. Biol. 362: 309-314 https://doi.org/10.1007/978-1-59745-257-1_21
  12. Sambrook J. and Russell D.W. 2001. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press, Plainview, NY
  13. Tai H.H., Pelletier C. and Beardmore T. 2004. Total RNA isolation from Picea mariana dry seed. Plant Mol Biol Rep. 22: 93a-93e https://doi.org/10.1007/BF02773357
  14. Tao N., Cheng Y., Xu J., XU Q. and Deng X. 2004. An effective protocol for the isolation of RNA from the pulp of repening citrus fruits. Plant Mol. Biol. Rep. 22: 305a-305f https://doi.org/10.1007/BF02773142
  15. Wang D., Wang B., Li B., Duan C. and Zhang J. 2004. Extraction of total RNA from Chrysanthemum containing high levels of phenolic and carbohydrates. Colloids Surf. B. Biointerfaces 36: 111-114 https://doi.org/10.1016/j.colsurfb.2004.05.014

Cited by

  1. Unusual phenolic compounds contribute to ecophysiological performance in the purple-colored green algaZygogonium ericetorum(Zygnematophyceae, Streptophyta) from a high-alpine habitat vol.49, pp.4, 2013, https://doi.org/10.1111/jpy.12075
  2. Geographic distribution and ecophysiological adaptations of desmids (Zygnematophyceae, Streptophyta) in relation to PAR, UV radiation and temperature: a review vol.787, pp.1, 2017, https://doi.org/10.1007/s10750-016-2958-5
  3. Changes in Phenolic Compounds and Cellular Ultrastructure of Arctic and Antarctic Strains of Zygnema (Zygnematophyceae, Streptophyta) after Exposure to Experimentally Enhanced UV to PAR Ratio vol.65, pp.1, 2013, https://doi.org/10.1007/s00248-012-0096-9
  4. Phylogenetic position ofZygogonium ericetorum(Zygnematophyceae, Charophyta) from a high alpine habitat and ultrastructural characterization of unusual aplanospores vol.50, pp.5, 2014, https://doi.org/10.1111/jpy.12229
  5. Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers vol.79, pp.3, 2012, https://doi.org/10.1111/j.1574-6941.2011.01245.x