References
- 김지영, 장동현, 맹성현 이석훈, 서정현, 김현. 2000. 한국어 테스트 컬렉션 HANTEC의 확장 및 보완. 제12회 한글 및 한국어 정보처리 학술대회 논문집, 210-215
- 김판준.2006. 기계학습을 통한 디스크립터 자동부여에 관한 연구. 정보관리학회지, 23(1): 279-299 https://doi.org/10.3743/KOSIM.2006.23.1.279
- 이재윤. 2005a. 문헌간 유사도를 이용한 SVM 분류기의 문헌분류성능 향상에 관한 연구. 정보관리학회지, 22(3) :261-287 https://doi.org/10.3743/KOSIM.2005.22.3.261
- 이재윤. 2005b. 자질 선정 기준과 가중치 할당 방식간의 관계를 고려한 문서 자동분류의 개선에 관한 연구. 한국문헌정보학회지, 39(2): 123-146.
- 정영미. 2005. 정보검색연구. 서울: 구미 무역(주) 출판부
- Basu, S., A. Banerjee, and R. Mooney. 2002. "Semi-supervised clustering by seeding." Proceedings of the Nineteenth International Conference on Machine Learning (ICML-02), 19-26
- Basu, S., M. Bilenko, and R.J. Mooney. 2004. "A probabilistic framework for semi-supervised clustering." Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 59-68.
- Bennett, K. P., and A. Demiriz. 1998. "A semi supervised support vector machines." Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II, 368-374.
- Blum, A., and T. Mitchell. 1998. "Combining labeled and unlabeled data with co-training." Proceedings of the Eleventh Annual Conference on Computational Learning Theory (COLT-98), 92-100.
- Bockhorst, J., and M. Craven. 2002. "Exploiting relations among concepts to acquire weakly labeled training data." Proceedings of the 19th International Conference on Machine Learning (ICML-02), 43-50
-
Cohn, D., R. Caruana, and A McCallum. 2003. Semi-supervised clustering with user feedback. Technical Report TR2003-1892, Cornell University. [cited 2006. 11. 9].
- Dattola, R. T. 1969. "A fast algorithm for automatic classification." Journal of Library Automation, 2(1): 31-48
- Denis, F. 1998. "PAC learning from positive statistical queries." Proceedings of the 9th International Conference on Algorithmic Learning Theory (ALT-98), 112-126
-
Denis, F., R. Gilleron, and M. Tommasi. 2002. "Text classification from positive and unlabeled examples." Proceedings of the 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU-02). [cited 2006. 10. 30].
- Ghani, R. 2002. "Combining labeled and unlabeled data for mu1ticlass text categorization." Proceedings of the 19th International Conference on Machine Learning (ICML-02), 187-194.
- Goldman, S., and Y. Zhou. 2000. "Enhancing supervised learning with unlabeled data." Proceedings of the 17th International Conference on Machine Learning (ICML-00), 327-334
- Jain, A. K., and R. C. Dubes. 1988. Algorithms for Clustering Data. Englewood Cliffs, NJ: Prentice-Hall
- Joachims, T. 1999. "Transductive inference for text classification using Support Vector Machines." Proceedings of 16th International Conferenee on Machine Learning (ICML-99), 200-209.
- Lewis, D. D., and W. A. Gale. 1994. "A sequential algorithm for training text classifiers." Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 3-12.
- Liu, B., Y. Dai,, X. Li, W. S. Lee, and P. S. Yu. 2003. "Building text classifiers using positive and unlabeled examples." Proceedings of the Third IEEE International Conference on Data Mining (ICDM-03), 179-188.
- McCallum, A., and K. Nigam. 1998. "Employing EM and pool-based active learning with keywords, EM and shrinkage." Proceedings of 16th International Conference on Machine Learning (ICML98), 359-367.
- Muslea, I., S. Minton, and C. Knoblock. 2002. "Active+semi-supervised learning = robust multi-view learning." Proceedings of the Nineteenth International Conference on Machine Learning (ICMA -02), 435-442
- Nigam, K., and R. Ghani. 2000. "Analyzing the effectiveness and applicability of co-training." Ninth International Confrence on Information and Knowledge Management(CIKM-00), 86-93.
- Nigam, K., A. McCallum, S. Thrun, and T. Mitchell. 2000. "Text classification from labeled and unlabeled documents using EM." Machine Learning, 39(2/3): 103-134. https://doi.org/10.1023/A:1007692713085
- Park, Seong-Bae, and Byong-Tak Zhang. 2004. "Co-trained support vector machines for large scale unstructured document classification using unlabeled data and syntactic information." Information Processing & Management, 40(3): 421-439. https://doi.org/10.1016/j.ipm.2003.09.003
- Silva, C., and B. Ribeiro. 2004. "Labeled and unlabeled data in text categorization." Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN-04), 2971-2976.
- Wagstaff, K., C. Cardie, S. Rogers, and S. Schroedl. 2001. "Constrained k-means clustering with background knowledge." Proceedings of 18th International Conference on Machine Learning (ICML01), 577-584.
- Witten, I. H., and E. Frank. 2005. Data Mining: Practical Machine Learning Tools and Techniques. 2nd ed. San Francisco: Morgan Kaufmann.
- Yu, Hwanjo, ChengXiang Zhai, and Jiawei Han. 2003. "Text classification from positive and unlabeled documents." Proceedings of the Twelfth International Conference on Information and Knowledge Management (CIKM-03), 232-239.
-
Zhang, T. 2000. "The Value of unlabeled data for classification problems." Proceedings of 17th International Conference on Machine Learning (ICML-00). [cited 2006.10. 21.].
Cited by
- Mapping Categories of Heterogeneous Sources Using Text Analytics vol.22, pp.4, 2016, https://doi.org/10.13088/jiis.2016.22.4.193
- A Study of Intelligent Recommendation System based on Naive Bayes Text Classification and Collaborative Filtering vol.41, pp.4, 2010, https://doi.org/10.1633/JIM.2010.41.4.227
- An Experimental Study on the Performance Improvement of Automatic Classification for the Articles of Korean Journals Based on Controlled Keywords in International Database vol.48, pp.3, 2014, https://doi.org/10.4275/KSLIS.2014.48.3.491