A SIGN TEST FOR UNIT ROOTS IN A SEASONAL MTAR MODEL

  • 발행 : 2007.03.31

초록

This study suggests a new method for testing seasonal unit roots in a momentum threshold autoregressive (MTAR) process. This sign test is robust against heteroscedastic or heavy tailed errors and is invariant to monotone data transformation. The proposed test is a seasonal extension of the sign test of Park and Shin (2006). In the case of partial seasonal unit root in an MTAR model, a Monte-Carlo study shows that the proposed test has better power than the seasonal sign test developed for AR model.

키워드

참고문헌

  1. CAMPBELL, B. AND DUFOUR, J-M. (1995). 'Exact nonparametric orthogonality and random walk tests', The Review of Economic and Statistics, 77, 1-16 https://doi.org/10.2307/2109988
  2. CANER, M. AND HANSEN, B. E. (2001). 'Threshold autoregression with a unit root', Econometrica, 69, 1555-1596 https://doi.org/10.1111/1468-0262.00257
  3. DICKEY, D. A., HASZA, D. P. AND FULLER, W. A. (1984). 'Testing for unit roots in seasonal time series', Journal of the American Statistical Association, 79, 355-367 https://doi.org/10.2307/2288276
  4. ENDERS, W. AND GRANGER, C. W. J. (1998). 'Unit-root tests and asymmetric adjustment with an example using the term structure of interest rates', Journal of Business and Economic Statistics, 16, .304-311 https://doi.org/10.2307/1392506
  5. HYLLEBERG, S., ENGLE, R. F., GRANGER, C. W. J. AND Yoo, B. S. (1990). 'Seasonal integration and cointegration', Journal of Econometrics, 44, 215-238 https://doi.org/10.1016/0304-4076(90)90080-D
  6. LEE, O. AND SHIN, D. W. (2001). 'A note on stationarity of the MTAR process on the boundary of the stationarity region', Economics Letters, 73, 263-268 https://doi.org/10.1016/S0165-1765(01)00508-0
  7. PARK, S. J. AND SHIN, D. W. (2006). 'A sign test for unit roots in a momentum threshold autoregressive process', Statistics & Probability Letters, 76, 986-990 https://doi.org/10.1016/j.spl.2005.11.005
  8. SHIN, D. W. AND LEE, O. (2001). 'Tests for asymmetry in possibly nonstationary time series data', Journal of Business & Economic Statistics, 19, 233-244 https://doi.org/10.1198/073500101316970458
  9. SHIN, D. W. AND, LEE, O. (2003). 'An instrumental variable approach for tests of unit roots and seasonal unit roots in asymmetric time series models', Journal of Econometrics, 115, 29-52 https://doi.org/10.1016/S0304-4076(03)00091-5
  10. SHIN, D. W. AND LEE, 0., (2007). 'Asymmetry and nonstationarity for a seasonal time series model', Journal of Econometrics, 136, 89-114 https://doi.org/10.1016/j.jeconom.2005.08.001
  11. SHIN, D. W. AND SO, B. S. (1999). 'Unit root tests based on adaptive maximum likelihood estimation', Econometric Theory, 15, 1-23
  12. SHIN, D. W. AND So, B. S. (2001). 'Recursive mean adjustment for unit root tests', Journal of Time Series Analysis, 22, 595-612 https://doi.org/10.1111/1467-9892.00243
  13. So, B. S. AND SHIN, D. W. (2001). 'An invariant sign test for random walks based on recursive median adjustment', Journal of Econometrics, 102, 197-229 https://doi.org/10.1016/S0304-4076(01)00053-7