SOME GENERALIZATIONS OF LOGISTIC DISTRIBUTION AND THEIR PROPERTIES

  • Mathew, Thomas (Department of Statistics, M.D. College) ;
  • Jayakumar, K. (Department of Statistics, University of Calicut, Calicut University)
  • Published : 2007.03.31

Abstract

The logistic distribution is generalized using the Marshall-Olkin scheme and its generalization. Some properties are studied. First order autoregressive time series model with Marshall-Olkin semi-logistic distribution as marginal is developed and studied.

Keywords

References

  1. GLASBEY, C. A. (1979). 'Correlated residuals in non-linear regression applied to growth data', Applied Statistics, 28, 251-259 https://doi.org/10.2307/2347195
  2. JAYAKUMAR, K. AND THOMAS MATHEW (2004). 'Semi logistic distribution and processes', Stochastic Modelling and Applications, 7, 20-32
  3. JOHNSON, N. L., KOTZ, S. AND BALAKRISHNAN, N. (1995). Continuous Univariate Distributions I, II, 2nd ed., John Wiley & Sons, New York
  4. JOHNSON, W. (1985). 'Influence measures for logistic regression: another point of view', Biometrika, 72, 59-65 https://doi.org/10.1093/biomet/72.1.59
  5. KAGAN, A. M., LINNIK, Yu. V. AND RAO, C. R. (1973). Characterization Problems in Mathematical Statistics, John Wiley & Sons, New York
  6. LAWRANCE, A. J. AND LEWIS, P. A. W. (1981). 'A new autoregressive time series model in exponential variable (NEAR (1))', Advances in Applied Probability, 13, 826-845 https://doi.org/10.2307/1426975
  7. LEWIS, P. A. W. AND McKENZIE, E. (1991). 'Minification processes and their transformations', Journal of Applied Probability, 28, 45-57 https://doi.org/10.2307/3214739
  8. MARSHALL, A. W. AND OLKIN, I. (1997). 'A new method for adding a parameter to a family of distributions with application to exponential and Weibull families', Biometrika, 84, 641-652 https://doi.org/10.1093/biomet/84.3.641
  9. MORGAN, B. S. T. (1985). 'The cubic logistic model for quantal assay data', Applied Statistics, 34, 105-113 https://doi.org/10.2307/2347362
  10. OLIVER, F. R. (1982). 'Notes on the logistic curve for human population', Journal of Royal Statistical Society Series A, 145, 359-363 https://doi.org/10.2307/2981868
  11. PILLAI, R. N. (1991). 'Semi-Pareto processes', Journal of Applied Probability, 28, 461-465 https://doi.org/10.2307/3214880
  12. PILLAI, R. N., JOSE, K. K. AND JAYAKUMAR, K. (1995). 'Autoregressive minification processes and the class of universal geometrical minima', Journal of Indian Statistical Association, 33, 53-61
  13. SIM, C. H. (1986). 'Simulation of Weibull and gamma autoregressive stationary processes', Communications in Statistics-Simulation and Computation, 15, 1141-1146 https://doi.org/10.1080/03610918608812565
  14. SIM, C. H. (1993). 'First order autoregressive logistic process', Journal of Applied Probability, 30, 467-470 https://doi.org/10.2307/3214856
  15. TAVARES, L. V. (1980). 'An exponential Markovian stationary process', Journal of Applied Probability, 17, 1117-1120 https://doi.org/10.2307/3213224
  16. WIJESINHA, A, BEGG, C. B., FUNKENSTEIN, H. H. AND McNEIL, B. J. (1983). 'Methodology for differential diagnosis of complex data set: a case study using data from routine Ct-scan examinations', Medical Decision Making, 3, 133-154 https://doi.org/10.1177/0272989X8300300202