Detection of the Optimum Spectral Roll-off Point using Violin as a Sound Source

바이올린 음원을 이용한 스펙트랄 롤오프 포인트의 최적점 검출

  • Kim, Jae-Chun (ANSAN College, Dept. of Digital Information & Communication)
  • Published : 2007.03.31

Abstract

Feature functions were used for the classification of music. The spectral roll-off, variance, average peak level, and class were chosen to make up a feature function vector. Among these, it is the spectral roll-off function that has a low-frequency to high-frequency ratio. To find the optimal roll-off point, the roll-off points from 0.05 to 0.95 were swept. The classification success rate was monitored as the roll-off point was being changed. The data that were used for the experiments were taken from the sounds made by a modern violin and a baroque one. Their shapes and sounds are similar, but they differ slightly in sound texture. As such, the data obtained from the sounds of these two kinds of violin can be useful in finding an adequate roll-off point. The optimal roll-off point, as determined through the experiment, was 0.85. At this point, the classification success rate was 85%, which was the highest.

음악을 분류하기 위해 특성함수를 사용하여 추출한 특성값 벡터를 사용한다. 본 실험에서는 특성값 벡터를 추출하기 위해 스펙트랄 롤오프, 분산, 평균 피크레벨을 사용하였다. 이중에서 스펙트랄 롤오프는 저음프레임과 고음프레임의 상대적인 비를 나타낸다. 최적의 롤오프 포인트를 찾기 위하여 롤오프 포인트를 0.05에서 0.9까지 0.05간격으로 증가시키며 반복실험 하였다. 롤오프 포인트를 증가시키며 분류성공률을 관찰하였다. 그리고 실험에 사용된 음원데이터는 바로크바이올린과 현대바이올린 연주이다. 두 종류의 악기는 모양과 주파수대역에 있어서 유사하지만 약간의 대역차와 질감의 차이를 가지고 있다. 이러한 특성이 최적의 롤오프 포인트를 찾는데 유용할 것으로 판단하였다. 실험결과 롤오프 포인트 0.85에서 가장 높은 분류성공률 85%를 나타냈다.

Keywords