DOI QR코드

DOI QR Code

강화재의 사용 방법이 복합 레진 인레이 브릿지의 파괴 강도에 미치는 영향

The effect of reinforcing methods on fracture strength of composite inlay bridge

  • 변창원 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 박상혁 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 박상진 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 최경규 (경희대학교 대학원 치의학과 치과보존학교실)
  • Byun, Chang-Won (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Park, Sang-Hyuk (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Sang-Jin, Park (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Choi, Kyoung-Kyu (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University)
  • 발행 : 2007.03.31

초록

본 연구는 복합레진 인레이 브릿지에서 강화재의 표면 처리와 사용 방법이 파괴 강도에 미치는 영향을 평가하였다. 본 연구에서 사용한 강화재료는 I Beam, U Beam, 1 + U Beam이었으며, 표면처리 방법은 Silane, Sandblast, Hole형성 (U beam)이었다. 강화 재료의 구성과 표면 처리 방법에 따라 총 11개의 실험군을 설정하였다. 상악 인공치 모형에서 제2소구치의 발거 상태를 가정하고 복합레진 인레이 브릿지 제작을 위하여 인접한 제1소구치에 DO, 제1대구치에 MO 와동을 형성하였다. 와동이 형성된 인공치 모형을 고무 인상체를 이용하여 석고로 제작하고, 각 실험군 별로 강화재료와 강화 재료의 표면 처리 방법에 따라 Tescera ATL (BISCO Inc. IL, USA) 복합레진을 사용하여 복합레진 인레이 브릿지를 제작하였다 그 후 시편을 복제모형에 인산아연시멘트로 합착하고 Universal testing machine (EZ Test, Shimadzu, Japan)을 이용하여 flexural stress를 가하여 파괴 강도를 측정하였으며 95% 유의 수준에서 one-way ANOVA/ Scheffes post-hoc test를 시행하여 통계 분석하였다. 다음과 같은 결론을 얻을 수 있었다. 1. 내부 강화재 I beam을 사용한 실험군이 유의성 있게 높은 파괴 강도 값을 보였다 (P<0.05). 2. 표면 처리 방법에 따른 차이는 나타나지 않았다 (P>0.05). 3. 복합레진 인레이 브릿지의 파괴는 강화 재료를 사용 시에는 복합레진과 강화 재료간에 분리 파괴가 나타났으며 사용하지 않은 경우에는 수직파괴 경향이 나타났다. 4. U beam에 유지 hole을 형성한 경우 파괴 강도 증가를 시키지 않았다.

The purpose of this study is to evaluate the effects of surface treatment and composition of reinforcement material on fracture strength of fiber reinforced composite inlay bridges. The materials used for this study were I-beam, U-beam TESCERA ATL system and ONE STEP(Bisco, IL, USA). Two kinds of surface treatments were used; the silane and the sandblast. The specimens were divided into 11 groups through the composition of reinforcing materials and the surface treatments. On the dentiform, supposing the missing of Maxillary second pre-molar and indirect composite inlay bridge cavities on adjacent first pre-molar disto-occlusal cavity, first molar mesio-occlusal cavity was prepared with conventional high-speed inlay bur. The reinforcing materials were placed on the proximal box space and build up the composite inlay bridge consequently. After the curing, specimen was set on the testing die with ZPC. Flexural force was applied with universal testing machine (EZ-tester; Shimadzu, Japan). at a cross-head speed of 1 mm/min until initial crack occurred. The data was analyzed using one-way ANOVA/Scheffes post-hoc test at 95% significance level. Groups using I-beam showed the highest fracture strengths (p<0.05) and there were no significant differences between each surface treatment (p>0.05) Most of the specimens in groups that used reinforcing material showed delamination. 1. The use of I-beam represented highest fracture strengths (p<0.05) 2. In groups only using silane as a surface treatment showed highest fracture strength, but there were no significant differences between other surface treatments (p>0.05). 3. The reinforcing materials affect the fracture strength and pattern of composites inlay bridge. 4 The holes at the U-beam did not increase the fracture strength of composites inlay bridge.

키워드

참고문헌

  1. Ellakwa AE, Shortall AC, Shehata MK. Marquis PM. The influence of fibre placement and position on the efficiency of reinforcement of fibre reinforced composite bridgework. J Oral Rehabil 28(8) :785-791, 2001 https://doi.org/10.1046/j.1365-2842.2001.00792.x
  2. Dyer SR. Lassila LV, Jokinen M, Vallittu PK. Effect of fiber position and orientation on fracture load of fiberreinforced composite. Dent Mat 20(10) :947-955, 2004 https://doi.org/10.1016/j.dental.2003.12.003
  3. Lassila LV, Vallittu PK. The effect of fiber position and polymerization condition on the flextural properties of fiber-reinforced composite. J Contemp Dent Pract 5(2): 14-26, 2004
  4. Debnath S, Wunder SL, McCool JI. Baran GR. Silane treatment effects on glass/resin interfacial shear strengths. Dent Mat 19(5) :441-448, 2003 https://doi.org/10.1016/S0109-5641(02)00089-1
  5. Ozcan M, Breuklander MH. Vallittu PK. The effect of box preparation on the strength of glass fiber-reinforced composite inlay-retained fixed partial dentures. J Prosthet Dent 93(4):337-345, 2005 https://doi.org/10.1016/j.prosdent.2005.01.006
  6. Ghring TN, Roos M. Inlay-fixed partial dentures adhesively retained and reinforced by glass fibers: clinical and scanning electron microscopy anlysis after five years. Eur J Oral Sci 113(1) :60-69, 2005 https://doi.org/10.1111/j.1600-0722.2005.00182.x
  7. Sahafi A, Peuzfeldt A, Asmussen E, Gotfredsen K. Bond strength of resin cement to dentin and to surface-treated posts of titanium alloy, glass fiber, and zirconia. J Adhes Dent 5(2): 153-162, 2003
  8. Rosentitt M, Behr M, Handel G. Fixed partial dentures: all-ceramics, fibre-reinforced composites and experimental systems. J Oral Rehabil 30(9) :873-877, 2003 https://doi.org/10.1046/j.1365-2842.2003.01075.x
  9. Suh BI. New concepts and technology for processing of indirect composites. Campend Cantin Educ Dent 24 (8) :40-42, 2003
  10. Ibbetson R. Clinical consideration for adhesive bridgework. Dent Update 31:254-265, 2004 https://doi.org/10.12968/denu.2004.31.5.254
  11. Goracci C, Tavares AU, Fabianelli A, Monticelli F. Raffaelli O. Cardoso PC. Tay F. Ferrari M. The adhesion between fiber posts and root canal walls: comparison between microtensile and push-out bond strength measurements. Eur J Oral Sci 112(4) :353-361. 2004 https://doi.org/10.1111/j.1600-0722.2004.00146.x
  12. Gorracci C. Raffaelli O, Monticelli F, Balleri B. Bertieeli E, Ferrari M. The adhesion between prefabricated FRC posts and composite resin cores: microtensile bond strength with and without post-silanization. Dent Mat 21(5) :437-444, 2005 https://doi.org/10.1016/j.dental.2004.07.012
  13. Ellakwa AE. Shortall AC. Marquis PM Influence of different techniques of laboratory construction on the fracture resistance of fiber-reinforced composite(FRC) bridges. J Contemp Dent 15(4):1-13, 2004
  14. Soares CJ, Martins LR, Pfeifer JM. Giannini M. Fracture resistance of teeth restored with indirectcomposite and ceramic inlay systems. Quint Int 35(4): 281-286. 2004
  15. Giordano R. Fiber reinforced composite resin systems. General Dentistry 48:244-249. 2000
  16. Menesaki Y, Suzuki S. Kajihara H. Tanaka T. Effect of reinforcement methods on the resin-bonded fixed partial dentures using a composite denture tooth as a pontic: in vitro evaluation. J Adhes Dent 5:225-234, 2003
  17. Craig WH, Courtney TH. On the tension test as a means of characterizing fiber composite failures mode. J Mat Sci 10:1119-26, 1975 https://doi.org/10.1007/BF00541392
  18. Edelhoff D, Spiekermann H. Yildirim M. Metal-free inlay-retained fixed partial dentures. Quint. Int 32(4) :269-281. 2001
  19. Zammarieh E. Three unit metal-free inlay bridge. J Dent Technol 17(6):21-25, 2000
  20. Isidor F, Stokholm R. Resin-bonded prostheses for posterior teeth. J Prosthet Dent 68(2) :239-243, 1992 https://doi.org/10.1016/0022-3913(92)90321-Z
  21. Lowe E, Rego NA. Posterior restoration using laboratory-fabricated composite resin. Pract Periodo Aesthet Dent 12(3) :279-283, 2000
  22. Shannon A. Fiber-reinforced composite bridge inlay-toinlay Technique. Dentistry today 16(11) :48-53, 1997
  23. Smales RJ, Berekally TL, Webster DA. Predictions of resin-bonded bridge survivals, comparing two statistical models. J Dent 21(3): 147-149, 1993 https://doi.org/10.1016/0300-5712(93)90024-K
  24. Ziada HM, Benington IC, Orr JF. Photoelastic stress analysis in resin bonded bridge design. Eur J Prosth Restor Dent 3(5): 217-222, 1995
  25. Markus SJ. An indirect/direct combined approach for reinforced fixed bridge. J N J Dent Assoc 65(1):23-26, 1994
  26. Ali A, Cassidy M, Gilmour A. Resin-bonded bridges: 2 Treatment planning, clinical cases and failures. Dent update 19:82-87, 1992
  27. Creugers NH. Resin-bonded bridges. A status report for the american journal of dentistry. Am J Dent 4(5): 251-255, 1991
  28. Terry DA, Touati B. Clinical considerations for aesthetic laboratory-fabricated inlay/onlay restorations: a review. Pract Proced Aesthet Dent 13(1): 51-58, 2001
  29. Alex G. Consideration for the successful placement of laboratory-processed, indirect composite restorations. Compend Contin Educ Dent 24:43-37, 2003
  30. Olin PS, Hill EM, Donahue JL. Clinical evaluation of resin-bonded bridges: a retrospective study. Quint Int 22(11) :873-877. 1991
  31. Blank JT. Scientifically based rationale and protocol for use of modern indirect resin inlays and onlays. J Esthet Dent 12(4): 195-208, 2000 https://doi.org/10.1111/j.1708-8240.2000.tb00222.x

피인용 문헌

  1. Esthetic rehabilitation of single anterior edentulous space using fiber-reinforced composite vol.39, pp.3, 2014, https://doi.org/10.5395/rde.2014.39.3.220