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Steiner Tree Compilation of Multicast under
Differentiated Services Constraints

Stavros Vrontis, Stavros Xynogalas, and Efstathios Sykas

Abstract: This paper deals with the creation of multicast trees in
a differentiated services (DiffServ) domain. Initially, we model the
integration problems of multicast & DiffServ and give a general de-
scription of our framework for multicast provisioning in DiffServ
domains. Within this framework, we introduce a novel heuristic
algorithm which calculates the multicast trees efficiently. The mul-
ticast tree’s format and the bandwidth constraints per service class
are modeled. The heuristic is based on the Dijkstra’s shortest path
algorithm and aims to produce the cheapest possible trees (Steiner
tree problem) that conform to the defined model. The produced
trees can be considered as DiffServ-customized Steiner trees. Fur-
thermore, we evaluate the algorithm with theoretical and experi-
mental analysis and finally, we present our conclusions.

Index Terms: Differentiated services (DiffServ), multicast, Steiner
tree problem.

I. INTRODUCTION

Multicast [1] is an efficient way of data packet delivery to
multiple receivers. Bandwidth economy is achieved, since the
unicast transmissions to the receivers are replaced with a single
(multicast) transmission, where packet replication occurs only
in specific nodes. Multicast is mostly applied to streaming ap-
plications, where the bandwidth demands are high (video con-
ference, video on demand, etc.).

A directed multicast tree is formed during each multicast
packet delivery session, starting from the source (root) and end-
ing at the receivers (leaves). From the graph theory point of
view, the problem of creating the tree with the lowest cost that
spans a set of nodes in a weighted network graph is known as
the Steiner tree problem [2]. The Steiner tree problem is NP-
complete, hence effective solutions need to be based on heuris-
tics.

The research community has been working towards the in-
tegration of multicast in state-of-the-art networks (e.g., mobile
networks, ad-hoc networks, differentiated services (DiffServ)
networks, etc.). Within this paper, we focus on the integration
of multicast in DiffServ [3] networks, a particularly interesting
case, because of the fundamental differences in the phitosophy
behind the multicast mechanism and DiffServ networks.

Specifically, in Section II, we discuss the problems that come
up when trying to integrate multicast in a DiffServ domain. We
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briefly present proposed solutions by other researchers, as well
as our own framework. In Section III, we model the problem
of the calculation of QoS-aware multicast trees and present our
heuristic algorithm, which aims to solve the DiffServ-customized
Steiner tree problem. In this section, we also present the most
important algorithms, which deal with the aforementioned prob-
lem. In Section IV, we compare our algorithm with the oth-
ers and evaluate it by performing theoretical and experimental
analysis. Finally, in Section V, we draw our conclusions.

II. MULTICAST IN DIFFSERV

Multicast packet delivery is difficult to be achieved in Diff-
Serv domains. Within multicast, all the domain’s nodes must
maintain state information for the multicast groups (e.g., which
network interface guides to one or more members of a multi-
cast group). Hence, multicast is not scalable. On the other hand,
DiffServ’s main advantage, compared to other QoS provisioning
architectures, is scalability. Scalability is achieved by pushing
all complex functions (marking, policing, classification, etc.) to
the edges of the network domain, while the core routers simply
classify the aggregated traffic according to the value (DiffServ
code point: DSCP) of the type of service (TOS) field of the IP
header. Moreover, the “core simplicity” principle of DiffServ is
violated within multicast, since all routers perform complicated
operations that are required for multicast packet transmissions.

The main problem of multicast & DiffServ integration arises
because of the unpredictable form of multicast trees. Once a new
multicast member joins a multicast group, a new branch towards
this node is added to the current multicast tree. The resources
for this branch have not been reserved a priori, since it cannot
be foreseen if and where the branch will be created. Hence,
packets of the flow that traverses the new branch will be lost in
case there is heavy network congestion (neglected reservation
sub-tree: NRS problem [4]).

Note that Bless et al. present explicitly the NRS problem in
physical language [4]. The reader is encouraged to read this doc-
ument to get a detailed analysis with examples, while within our
article we formulate the problem to complete the whole picture.

Another multicast & DiffServ integration problem arises due
to the fact that the QoS provisioning in DiffServ is source-driven
meaning that the packets are marked in the source’s side (the
source’s neighbor edge router), while multicast is a receiver-
driven procedure meaning that the procedure depends on the re-
ceivers’ events (join/leave group). Hence, the service level for
the traffic flow depends only on the source and no mechanism
has been foreseen for service differentiation among the receivers
(the heterogeneous QoS problem).
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A. The Underlying Framework

Numerous solutions have been proposed for the integration
of multicast with DiffServ, however none of them solves com-
pletely the problem, while sometimes they constitute new prob-
lems. The current solutions can be classified into three main
categories; a) state-based, b) edge-based, and ¢) encapsulation-
based.

The state-based solutions require all the domain’s nodes to
store state information per multicast group. The statelessness of
the core routers is violated and poor scalability is achieved. The
most important solutions in this category are the Bless” IETF-
RFC [4], the QUASIMODO [5], DAM [6], QMD [7], and RE-
UNITE [8] frameworks.

Within the edge-based solutions, multicast functions are lim-
ited to the edge routers. No trees are built and no packet replica-
tions are performed in the core network. Obviously, the achieved
bandwidth economy is limited. The most typical algorithm of
this category is the edge-based multicasting (EBM) [9].

The encapsulation-based solutions are based on the extension
of the IP header of the multicast packets in order to include
the tree topology. The routers parse the IP header and decide
to replicate or not the incoming multicast packet, determine the
number of copies and select the proper DSCP value of the DS
byte for each copy. The total length of the IP header and there-
fore the total length of the multicast packet increases propor-
tionally to the number of the receivers, causing scalability. The
main representatives of this category are the DSMCast [10] and
the XCAST [11] protocols.

Unfortunately, all solutions in these categories suffer from
different disadvantages and only solve the problems partiaily.
In [12], we presented a framework for the multicast provisioning
in DiffServ domains analyzing issues like group & bandwidth
management, inter-domain multicasting etc. Within the current
article we do not repeat this analysis, but we highlight the main
components of the framework instead.

Packet delivery within our framework is done with a mecha-
nism similar to the QoS-aware multicasting in DiffServ domains
(QMD) and REUNITE. Specifically, the multicast transmission
is achieved through equivalent unicast transmissions between
the source, the receivers and specific key nodes. In conventional
multicast terms, these key nodes are the nodes of the multicast
tree with degree more than one. The source sends the data in uni-
cast packets to the first key node. Each key node replicates the
received packets, marks them and sends them to its children keys
via simple unicast transmission. Finally, the group members re-
ceive the data packets from the corresponding key nodes. The
module at each key node performing these operations (namely,
multicaster) assigns to each outgoing flow (directed to a sub-
set of receivers) the DSCP value that corresponds to the highest
service level for the receivers’ requirements.

Fig. 1 demonstrates a multicast delivery via unicast transmis-
sions: Receiver 2 (R2) requires .S; service level, receiver 4 (R4)
requires lower level service S;_1, and finally, receivers 1 (R1)
and 3 (R3) require the lowest service level S; 5. The source’s
(RO) unicast packets are received from multicaster-0 at node B.
Multicaster-O creates two flows: One flow is marked with the S;
DSCP and sent to multicaster-1 at node C' and another is marked
with the. S;_1 DSCP and sent to R4. Multicaster-1 creates two

Fig. 1. Multicast equivalent with unicast transmissions.

flows towards the R1 and the multicaster-2 at node G and so on.

Within traditional DiffServ, the bandwidth management is
done by the domain’s administrative component, namely the
bandwidth broker (BB). The BB stores information for the con-
sumed bandwidth at each link for each service class. Since the
BB is aware of the available bandwidth resources of its domain,
we extend its functionality with the calculation of the (equiva-
lent) multicast tree. Hence, the NRS problem is solved, since
the BB predicts the bandwidth consumptions at all links per ser-
vice class before “producing” the multicast tree. Within the cur-
rent article, we focus on the calculation of the multicast tree.
The multicast tree should comprise of the least possible links,
and obviously have the format that was discussed earlier (con-
strained Steiner tree problem).

III. CALCULATING QOS-AWARE MULTICAST TREES

Within this section, we focus on the algorithm we propose
for the calculation of QoS-aware multicast trees. The algorithm
is specific and is applied for our framework, which was briefly
introduced previously.

A. Problem Modeling

Using the common notation for graphs [13], we denote the
links’ cost function ¢: £ — R as ¢;; for the link e;;. For a
network H, the notation ¢(H) corresponds to the sum of the
costs of all links in H. The set of the terminal nodes is denoted
as

R={z1,2, -, 2}, where r = |R].

The z; terminal is the source, while the set of the receivers of z;
is denoted as
R* = R\{=}.

Moreover, the set of the receivers of z; with required service
level s is denoted as RZ* (R* = |J, RZ").

A cut in a graph G(V, E) is defined as a partition C =
W W)of V(BCW TV, V=WUW). Weuse (W) to
denote the set of links of & thatu, € Wandu; € Woru, e W
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and u; € W (for undirected graphs). For simplicity, we write
8(u;) instead of §({w;}). A cut C = (W, W) is a Steiner cut if
RNW #0and RNW # 0.

The classical Steiner tree problem is defined as following:
Given a network G(V, E) and a non-empty set of terminals R
(R C V), find a tree T¢(R) C G, such that there is a path
between any pair of terminals and ¢(T¢(R)) is minimized. The
Steiner tree is an acyclic, connected sub-network of 7, spanning
(a superset of) R.

Within this paragraph, we give the formulations in order to
define the problem of finding the multicast tree in DiffServ net-
works with the minimum cost. This problem is a constrained
Steiner tree problem with bandwidth constraints for each link
per service class. Moreover, we have that ¢;; = 1. The goal is
to find the tree T' C G that is described in Section II with the
minimum cost, without violating the mentioned constraints.

We use the following binary variable X;; for each edge, in-
dicating whether an edge is part of the solution (X,;, = 1) or
not {X;;, = 0). The pointer s specifies the service level for
the traffic that traverses the (u;, u;) link. Specifically, the X;;,
variable is defined as following:

1
Xij, =14
Js {07

Obviously, we have

if e;; € T, and service level of u; — w; is s
otherwise.

D
D> Xi <1

We will use the following notations:

Xi(S) = Y Xij, and X(8) = > Xi(S).

eijES k

2

We state the problem using the following formulations:

Smax

Y. > Xij —min 3
s=1 Ve;;cE
(b, +757)Xij, < byj,, Vs> 1, Vey; € E @)
X@EW)) >1 (5)
s> 1, if Xy, = Xjp, = 1; |Pr(ug, 21)| < |Pr(uj, 21)| (6)

Smax

Z Xk(PT(Zl,Zi)) = |PT(21,Z@')|, Vz; € R?\{zl} 7
k=s

Xij, € {0, 1}/, ®)

The calculation of the X;; variables for the above linear
system of formulations provides the problem’s solution. Equa-
tion (3) represents the objective function, which is the total num-
ber of links of the multicast tree, while (4) represents the band-
width constraints at each link for each service class. Notice that
the constraint is not valid for s = 1 (e.g., for the best effort
class), as appears in the formulation. The restriction (5) guaran-
tees that in any set of links corresponding to a feasible solution,
there is a path from z; to any other terminal. Equations (6) and
(7) guarantee that the multicast tree’s structure conforms to the
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one defined in the previous section. Specifically, the formula-
tion (6) states the service degradation across the tree: Walking
across the tree, the service level of the traffic that traverses the
tree is degraded while we are moving towards receivers with
lower service level requirements. Equation (7) guarantees the
transmission of traffic with the required service level to each re-
ceiver. (7) may not be possible together with the formulation (4)
(e.g., there is no path with the available bandwidth for the re-
quired service class for a receiver) and in such case there will be
no feasible solution to the problem. However, note that within
the proposed heuristic algorithm (see next section), we move
each user (that requires service level s) from the set R?'\{z } to
the lower service level set R2* | \{z } if there is no path with the
available bandwidth for the required service class (for s > 1).
This way the multicast packet delivery is guaranteed for all re-
ceivers in case of congestions, degrading, however, the service
level. We remind here that the constraint (4) is valid for s > 1.
Therefore, our proposed algorithm always provides a feasible
solution, since (4) is careless for the receivers of R;*\{z}.

The problem is a NP-complete problem. By taking s =
Smax = 1, (3)—(8) define the classical Steiner tree problem with
bandwidth constraints (NP-complete). Additionally, if we re-
move (4) the remaining formulations correspond to the classical
Steiner tree problem (NP-complete).

B. Multicast Tree Calculation Algorithms

Several algorithms have been proposed for the calculation of
multicast trees. The most significant of which are the short-
est path tree (SPT), M-QOSPF [14], QMRP [15], [16], QMD-
DIJKSTRA [17], spanning-joins protocols [17], and QoSMIC
[18], [19].

The SPT algorithm (used in core based tree (CBT) [20] and
protocol independent multicast (PIM) [21]) joins the new mem-
ber with the root of the multicast tree, finding the shortest path
towards the root. In this way, the produced tree is not necessarily
the least-cost tree.

The M-QOSPF is based on the QoS routing extensions to
OSPF and it assumes that all the routers know the domain’s
topology as well as the QoS status. When a new router wants
to join a multicast group, it computes a QoS-satisfied path to-
ward the source (or core router) and sends join request to the
source along the path.

QMRP is a distributed QoS-aware multicast routing algo-
rithm. In QMRP, a new member sends a signaling message
along its shortest-path route towards the source in order to check
each link to see if it has the available resources. If not, QMRP
backtracks to the previous hop. The message is copied and de-
toured to the adjacent nodes, which try to continue following the
shortest-path route to the source. The procedure is repeated un-
til one or more messages reach the source. Where two feasible
paths meet, a node must decide which path to use. Even though,
exploring an unlimited number can lead to a high success rate,
the overhead is high. Thus, a restricted form of QMRP has been
proposed (QMRP-n), meaning that n nodes between the new
member and the source can be actively detouring a signaling
message.

In QMD-DIIKSTRA, the new member is connected to the
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tree taking into account the QoS level per branch. The new mem-
ber is attached to the tree with the shortest path to the closest
node of the tree, which is being traversed by traffic with the re-
quired QoS level. The algorithm is QoS-aware and the current
tree structure is exploited.

In the spanning-joins protocol, a new member broadcasts
join-request messages in its neighborhood to find on-tree nodes.
The on-tree nodes reply to the new member. The path of the
reply message, determined by the unicast routing algorithm, is
a candidate path. The new member may collect multiple reply
messages, which contain QoS related information regarding the
path. The new member selects the best candidate path. Con-
secutive broadcasts are necessary to search increasingly larger
neighborhoods until on-tree nodes are found. This process can
increase the overhead significantly.

In QoSMIC protocol, the search for candidate paths consists
of two procedures, local search and tree search. The method
is similar to the previous one, with the difference that the tree
search allows QoSMIC to restrict its flooding local search in a
small neighborhood.

C. MTCA

The proposed heuristic multicast tree calculation algorithm
(MTCA) is based on the Dijkstra’s shortest path algorithm [22]
for the computation of the shortest path between the source and
the destination. MTCA aims to produce the minimum-cost tree,
which connects the source with the group’s members.

MTCA takes as input the available bandwidth table B =
[Bs, Bs, Bsgy, AX] and the requested transmission
rate R, where Bg, is the column table for the available traffic
for the .S; service class.

Step 0: Initially, the corresponding cost table

C= {051 CSz CSSMAX]

is created from table B:

if R< By

[ NORMAL_COST,
v if R > Byj.

INFINITE _COST,

The rule is “assign the NORMAL_COST value (e.g.,
100) 1o a link, if the requested rate is less than the avail-
able link’s bandwidth for the specific service class, other-
wise assign the INFINITE_COST value (e.g., 100000) to
it.” Note that:

INFINITE COST » NORMAL_COST.

For example, for transmission rate R = 1 Mbps, the
BB will create the Table 2 for the case of Table 1
(NORMAL_COST = 100, INFINITE_COST =
100000).

Step 1: The receivers are classified into groups, which
correspond to the service classes.

Step 2: The algorithm parses the receivers of each group
successively. Specifically, it parses first the receivers of
the highest-service-level group and in the end the receivers
of the lowest-service-level group. Step 2 requires for each
receiver the execution of the sub-steps 1 and 2.

Table 1. An example “links-available bandwidth” table.

[Link | Siclass | Syclass [ Ssclass |

1 2 Mbps 1 Mbps | 3 Mbps
2 0.1 Mbps | 1Mbps | 5 Mbps
3 1 Mbps | 0.2Mbps | 3 Mbps
4 2 Mbps 1 Mbps | 2 Mbps

Table 2. The cost table for the case of Table 1 and R = 1 Mbps.
[ Link | S) class [ Spclass | Ss class |

1 100 100 100
2 100,000 100 100
3 100 100,000 100
4 100 100 100

Sub-step 1: Dijkstra’s algorithm calculates the short-
est path for a receiver utilizing the cost table C, which
gives the links’ costs. The selected path will not con-
tain links that don’t have the required available band-
width. If the shortest path contains a link with cost
equal to the INFINITE_COST, the receiver will be re-
moved to a lower service level group (except from the
receivers of the lowest service class). The cost table
is updated after the calculation of the shortest path for
the receiver as following:

o {MIN_COST, if link ¢ belongs to path
=

unchanged, otherwise.

The MIN_COST value (e.g., 60) is assigned to the
path’s links for all classes. The updated cost table will
cause the BB to prefer paths that contain links that
have already been selected in previous steps. The se-
lection of the MIN_COST value influences the pro-
duced multicast tree (see Section IV). Note that:

MIN_COST < NORMAL_COST.

Sub-step 2: The selected path is merged with the cur-
rent tree.
The algorithm finalizes when all the receivers (of all groups)
have been parsed.

1V. EVALUATION

Within this section, we evaluate the proposed algorithm by
comparing it with related algorithms introduced in the previous
section.

CBT is not QoS-aware and the produced trees are not least-
cost by default, while our algorithm is QoS-aware and its target
is to produce least-cost trees. Hence, CBT cannot be used in
DiffServ domains.

The bandwidth consumed from the spanning-join and QoS-
MIC protocols is much more than the one consumed from our
algorithm since these algorithms use flooding in order to find
the on-tree nodes. Moreover, the algorithms aim to connect the
new member with the on-tree nodes. This way, the produced
tree is not necessarily the least-cost tree (a reconstruction of the
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tree may produce a cheaper tree) and there might not be a QoS-
satisfying path between the new member and the on-tree nodes,
while there might be a QoS-satisfying path between the root
and the new member. Hence, these algorithms do not always
provide a solution; while MTCA always converges finding the
QoS-satisfying path if there is one. If there is not such path,
MTCA will still provide solution by degrading the new mem-
ber’s QoS requirements in order to connect him to the multicast
tree.

M-QOSPF violates the basic principle of DiffServ, since it
requires the core routers keep status information regarding do-
main’s topology and QoS. Moreover, the algorithm calculates a
QoS-satisfying path towards the source, without considering ex-
ploiting the current multicast flow. This way a total new branch
may be created consuming unnecessary bandwidth resources,
while a shorter branch could provide to the new member con-
nectivity with the multicast tree.

Likewise M-QOSPF, QMRP requires the core routers keep
status information regarding available resources violating the
basic principle of DiffServ. QMRP will always find a QoS-
satisfying path, if there is one; however, QMRP’s main draw-
back is bandwidth consumption. A lot of bandwidth is con-
sumed by the signaling messages, which actually test paths for
available resources. Moreover, bandwidth economy is not con-
sidered since the structure of the current tree is not exploited and
the algorithm does not aim to produce cheap trees.

Within QMD-DIJKSTRA, a new branch is added to the cur-
rent multicast tree, when a new user joins the multicast tree.
Even though the new branch is efficiently selected, adding
branches to the tree does not lead to an optimal solution by de-
fault. The cost of a multicast tree calculated this way is generally
greater than the one produced within MTCA, even though the
signaling requirements are greater within our framework, since
the multicast tree is cheaper in terms of bandwidth consump-
tion and achieves the main goal of bandwidth economy. More-
over, the QMD-Dijkstra does not always provide solution since
it aims to join the new member with the existing tree under QoS
requirements, which may not be possible. This may be possible
if the tree is restructured (MTCA).

Within the next paragraphs, we study the performance and
the required time of MTCA. Performance refers to the number
of links that constitate the multicast tree. Optimal performance
is achieved if this value is equal to the minimum possible. This
is essential because the less links constitute the multicast tree
the less bandwidth is consumed. Moreover, the required time
for MTCA is a crucial parameter for the overall system’s per-
formance. Specifically, it is more important for the case that
users frequently join/leave the multicast group and consequently
MTCA is executed many times. Hence, it is important that
MTCA spends the least time possible. We will proceed with
both theoretical and experimental analysis. ‘

A. Theoretical Analysis
A.1 Performance Analysis

Within this paragraph, we calculate lower bounds for the per-
formance of MTCA. The calculated limits define the maximum
value of the ratio between the cost of the multicast tree (pro-
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C4

Z )

Fig. 2. Worst possible tree provided by MTCA.

duced by MTCA) C' and the theoretically optimal cost of the
multicast tree C*.

We consider the worst case scenario concerning the MTCA’s
performance that appears in Fig. 2.

This is the case where all the calculated shortest paths (by
MTCA) towards each receiver cannot be merged. Hence, a tree
is created (bold lines) with r — 1 branches, all of them starting
from the source (z1). The ¢; value corresponds to the total cost
of the branch (21, #;). The total cost C of the multicast tree is
given by
®

In the above figure, we can see that the optimal tree’s cost
is; C* = r — 1, provided that z; is connected directly to at
least one receiver (e.g., ¢; = 1). Obviously, this value is the
minimum possible for every network case with r — 1 receivers.
We have for MTCA that

C=co+cz+-+ecr

MIN_COST =k- NORMAL_COST (10)
where k is a constant with k& < 1.

Hence, when the first branch (z), z2) is selected, the cost for
each link of this branch is multiplied with the £ constant. There-
fore, MTCA will apply the Dijkstra’s shortest path (Dijkstra-SP)
algorithm considering that the links of (21, z2) have now de-
creased cost value. Having selected for the receiver z3 the path
(21, z3) appearing in Fig. 2, we can see that being the shortest
path, the selected path is also shorter than the path through zs.
Therefore, the following inequality is true: ¢3 < k- c2 + 1.

Similarly, we can take for each receiver the following inequal-
ities

ca<k-cs+1l,cs<k-ca+1l,--, ¢ <k-cro1+1
We add the above inequalities
03+C4‘|‘"'+CT<k(CQ+C3+"'+07~_1)+’f‘—2.

Fork <1,
r—2+co—k-cr
. 11
C < T % (1D

The ratio between C and C* is bounded by

r—2+c—k-c

ClC < = TDa—m
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Fig. 3. Bounds for MTCA performance for three cases of network's di-
ameter D: (a) D =4, (b) D = 8, (¢) D = 16.

Ifco =D,c,=1,C* > 1,
1 D—k—-1
+
1-k (r—=1(1-k)

where D is the network’s diameter. For a large number of re-
ceivers, (12) leads to

C/C* < (12)

lim C/C* <

7200

T (13)

Equation (12) provides an upper bound (worst case scenario)
for the ratio between C' and C*. We can see that the bound
for the C//C* ratio depends on the number of receivers and the
network’s diameter. Specifically, the bound decreases while the
number of the receivers increases. On the other hand, the bound
increases proportionally with the network’s diameter.

In Fig. 3, we present (12) taking three cases for network’s
diameter. We can see that the network’s diameter practically
influences the bound only in case of small number of receivers.
On the other hand, the k constant affects this bound significantly,
as it also shown in (12) and (13).

Table 3. Five networks selected from the SP test-set of the SteinLib

library.
| Name | VI L IElL T I | ¢ |
oddwheel3 7 9 5 5
antiwheel5 10 15 6 7
w13¢29 783 | 2262 | 407 | 507
w23¢c23 1081 | 3174 | 553 | 692
w3c571 3997 | 10278 | 2285 | 2854

A.2 Time Analysis

In order to calculate the MTCA’s required time, we exam-
ine the required time for each step analyzed in subsection II-C.
Within step 2, the Dijkstra-SP algorithm is executed for each re-
ceiver to calculate the shortest paths. The running time of the
Dijkstra-SP algorithm (the version that uses a Fibonacci heap
for the storage of the vertices’ labels) is O(E 4V log V), where
E is the number of edges and V is the number of vertices. More-
over, the cost table is sorted alphabetically. Since the (binary)
search for a link requires O(log F), the update of the cost table
requires, in the worst case, O(D log I) for each receiver (re-
call that D is the network’s diameter). The merging of a path
with the current tree requires O(D) (worst case). Note that this
period decreases, as the network graph becomes denser. Sum-
marizing, it is easy to see that the required time for MTCA, in a
graph with diameter D, V vertices, E edges, and r receivers is

O(r(E +VlogV + Dlog E)). (14)

The above formula shows that the MTCA’s required time de-
pends on the number of the receivers, the number of edges/nodes
of the network graph and finally on the network’s diameter.

B. Experimental Analysis

We performed tests to evaluate MTCA and crosscheck the
theoretical studies of previous paragraph using network in-
stances mosily selected from the SteinLib library [23]. Stein-
Lib is a collection of Steiner tree network problems. A Steiner
tree network problem is defined from the exact network topol-
ogy (nodes and links) and the nodes of the network that are to
be connected. Within SteinL.ib, the optimal solution or the best
solution found so far is included for each Steiner tree instance.
This information was used in order to evaluate the MTCA’s per-
formance.

Note that the experiments described in this section that are
applied to instances from the SteinLib library refer to the five
networks selected from the SP test-set (Table 3).

Besides SteinLib instances, we tested MTCA using custom
network graphs created using the Waxman model [24]. The
Waxman model randomly distributes nodes over a rectangular
coordinate grid. The Euclidean metric is then used to determine
the distance between each pair of nodes. Two nodes are con-
nected with a probability P(u, v) that depends on their distance:
_dlww)
P(u,v) = fe” L (15)
where d(u, v) is the distance from the node u to v, L is the max-
imum distance between two nodes, and « and 3 are parameters
in the range (0, 1).
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Fig. 4. (a) The MTCA has the maximum performance for k < 0.33, (b)
for another network, we should select & < 0.5.

Finally, we mention that all tests were performed in a Mi-
crosoft Windows PC with CPU speed 1.4 GHz (Centrino tech-
nology) and 1024 MB RAM memory.

B.1 Performance Analysis

Theoretical analysis showed that MTCA’s performance de-
pends on the number of the receivers, the network’s diameter
and the value of the constant parameter k. We remind that k
stands for the ratio of the MINIMUM _CQOST value with the
NORMAL_COST value.

Initially, we will examine the influence of k& to the MTCA’s
performance. We define as ko, the values of k that give muliti-
cast trees with the minimum number of links. By performing
tests for several network topologies and receivers’ scenarios,
we concluded that generally there is a threshold K for & val-
ues, which influences the path selection. Specifically, we have
dk < K: k = kopi. The tree’s total cost is stable for £ > K
and is improved for & < K. However, while the k,p,; values
provide trees with less total links, the length of the longest path
from the source to any destination increases. Even though in
some experiments the algorithm calculated the same multicast
tree for all & values (e.g., K = 1), we observed the threshold’s
existence in most of the cases. The experiments showed that the
threshold’s value depends on the network topology. Generally,
we concluded that K < 0.5. K depends on the order, in which
the algorithm parses the receivers and on the receivers’ position
in the network.

Fig. 4 shows the results of two experiments in different net-
work topologies. Both networks comprised of 40 nodes, ran-
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Fig. 5. The number of links of the produced multicast trees for SteinLib
networks: (@) £ = 0.5, (b) k = 0.2.

Table 4. C/C* ratio for the SteinLib networks.

[ Name [ C/C* (k=10.5) IC/C’* (k:().Q)J
oddwheel3 1 1
antiwheel5 1 1

w13c29 1.33 1.28
w23c23 1.37 1.33
w3c571 1.2 1.18

domly connected (Waxman grid). For each network we per-
formed the experiment for 4, 8, and 16 receivers, modifying the
value of k (e.g., the MIN_COST value).

Furthermore, we applied MTCA to the SteinLib instances for
two cases; a) k = 0.5 and b) k = 0.2. MTCA was applied
to numerous subsets of the receivers. Initially, MTCA experi-
ments included only the first receiver from the SteinLib network.
Then, we increased the number of the receivers, by including
the next receiver and repeated the experiment. The procedure
was repeated and ended when all of the receivers were included.
The number of links for the produced multicast trees appears in
Fig. 5 (logarithmic scale for both axes).

The values for the ratio C/C* for the SteinLib networks (with
the maximum number of receivers) appear in Table 4. We see
that MTCA has excellent performance for small networks, while
the performance decreases for larger networks.

The experiments with random Waxman grids gave max C/C*
ratio values close to 1.4,
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Fig. 6. MTCA'’s required time for SteinlLib networks: (a) The calculation
time for the SteinLib networks, (b) a magnification of the lower-left
corner of the (a).

B.2 Time Analysis

We performed tests for several Waxman grids and SteinLib
networks, in order to measure the required time for MTCA. The
tests confirmed that the calculation time increases, while the
number of receivers or the network’s nodes/edges increases. The
calculation time for the SteinLib networks appears in Fig. 6(a)
(logarithmic scale for both axes). And Fig. 6(b) is a magnifica-
tion (linear scale) of the lower-left corner of the first figure.

‘We conclude that the required time for MTCA is less than one
second in normal cases (regarding the number of group mem-
bers), a few seconds in case of larger networks, while one minute
is required in extreme cases (huge networks).

V. CONCLUSIONS

Within this paper, we dealt with the difficult problem of mul-
ticast in DiffServ domains. Initially, we formulated the prob-
lem instead of only describing it in physical language. Even
though, this issue is explicitly analyzed in literature, a mathe-
matical approach was missing. Then, we presented some fea-
tures of our framework, which aims to solve the aforementioned
problem. This solution requires the creation of multicast trees
of a specific format. First of all, links with not enough available
bandwidth for a specific service class should not be included in
the produced multicast tree. Moreover, each receiver should be
served with the requested service level, if this is possible. The
idea of service degradation while moving towards the receivers
should be reflected to the produced multicast tree. Of course,
the number of links that comprise the multicast tree should be

the least possible (Steiner tree problem). These restrictions were
presented through mathematical formulations.

A novel heuristic, namely MTCA, was introduced to provide
solutions conforming to these formulations. MTCA is explic-
itly described and evaluated via theoretical and experimental
analysis. Within both methods, we evaluated MTCA’s perfor-
mance in terms of cost (number of links) and required time of
the produced multicast trees. Experiments showed that MTCA
provides trees with low cost and requires little time (less than
1 second) for small and medium network instances. Moreover,
having that MTCA always converges (provides a solution in any
case), we consider it as the optimal solution for the calculation
of multicast trees suitable for our framework.
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