DOI QR코드

DOI QR Code

Graphical Method for Multiple Regression Model

다중회귀모형의 그래픽적 방법

  • Lee, W.R. (Department of Applied Statistics, Kyonggi University) ;
  • Lee, U.K. (Research Institute of Applied Statistics, Sungkyunkwan University) ;
  • Hong, C.S. (Department of Statistics, Sungkyunkwan University)
  • 이우리 (경기대학교 응용통계학과) ;
  • 이의기 (성균관대학교 응용통계연구소) ;
  • 홍종선 (성균관대학교 경제학부 통계학)
  • Published : 2007.03.31

Abstract

In order to represent multiple regression data, an alternative graphical method, called as SSR Plot, is proposed by using geometrical description methods. This plot uses the relation that the sum of sqaures for regression (SSR) of two explanatory variables is known as the sum of the SSR of one variable and the increase in the SSR due to the addition of other variable to the model that already contains a variable. This half circle shaped SSR plot contains vectors corresponding explanatory variables. We might conclude that some explanatory variables corresponding to vectors which locate near the horisontal axis do affect the response variable. Also, for the regression model with two explanatory variables, a magnitude of the angle between two vectors can be identified for suppression.

기하학적인 방법을 사용하여 다중회귀모형 자료를 그래프로 구현하는 회귀제곱합 그림을 제안한다. 두 설명변수의 회귀제곱합은 한 변수의 단순회귀제곱합과 한 변수의 회귀모형에 다른 변수가 추가되었을 때 회귀제곱합의 증가분의 합으로 표현되는 관계식을 이용하여 회귀제곱합 그림을 반원의 형태로 구현한다. 회귀제곱합 그림은 설명변수에 대응하는 벡터로 표현되고, 반응변수에 영향력 정도를 시각적으로 구현하는 그래픽적인 방법이다. 수평축에 가까운 벡터에 대응하는 설명변수가 반응변수에 더 많은 영향을 주는 설명변수라고 판단할 수 있다 또한 두개의 설명변수에 대응하는 벡터 사이의 각도 크기로 서프레션의 발생여부를 진단 가능하다.

Keywords

References

  1. Box, G. E. P., Hunter, W. G. and Hunter, J. S. (1978). Statistics for Experimenters: An Introduction to Design, Data Analysis and Model Building, John Wiley & Sons, New York
  2. Bryant, P. (1984). Geometry, statistics, probability: variations on a common theme, The American Statistician, 38, 38-48 https://doi.org/10.2307/2683558
  3. Chatterjee, S., Hadi, A. S. and Price, B. (2000). Regression Analysis by Example, 3rd ed., John Wiley & Sons, New York
  4. Christensen, R. (2006). Comment and reply to Friedman and Wall (2005), The American Statistician, 60, 101-102 https://doi.org/10.1198/000313006X93276
  5. Cohen, J. and Cohen, P. (1975). Applied Multiple Regression/Correlation Analysis for the Behavioml Sciences, Lawrence Erlbaum Associates, New Jersey
  6. Conger, A. J. (1974). A revised definition for suppressor variables: a guide to their identification and interpretation, Educational and Psychological Measurement, 34, 35-46 https://doi.org/10.1177/001316447403400105
  7. Corsten, L. C. A. and Gabriel, K. R. (1976). Graphical exploration in comparing variance matrices, Biometrics, 32, 851-863 https://doi.org/10.2307/2529269
  8. Draper, N. and Smith, H. (1981). Applied Regression Analysis, 2nd ed., John Wiley & Sons, New York
  9. Freund, R. J. (1988). When is $R^2>r^2_{yx1}+r^2_{yx2}$(Revisited), The American Statistician, 42, 89-90
  10. Friedman, L. and Wall, M. (2005). Graphical views of suppression and multicollinearity in multiple linear regression, The American Statistician, 59, 127-136 https://doi.org/10.1198/000313005X41337
  11. Gabriel, K. R. (1971). The biplot graphical display of matrices with applications to principal component analysis, Biometrika, 58, 453-467 https://doi.org/10.1093/biomet/58.3.453
  12. Gay, D. M. (1983). Algorithm 611: subroutines for unconstrained minimization using a model/trust-region approach, ACM Transactions on Mathematical Software, 9, 503-524 https://doi.org/10.1145/356056.356066
  13. Gay, D. M. (1984). A trust region approach to linearly constrained optimization, In Numerical Analysis, Proceedings, Dundee 1983, (F. A. Lootsma ed.), Springer, Berlin, 171-189
  14. Hamilton, D. (1987). Sometimes $R^2>r^2_{yx1}+r^2_{yx2}$ correlated variables are not always redundant, The American Statistician, 41, 129-132 https://doi.org/10.2307/2684224
  15. Hamilton, D. C. (1988). Reply to Freund and Mitra, The American Statistician, 42, 90-91
  16. Herr, D. G. (1980). On the history of the use of geometry in the general linear model, The American Statistician, 34, 43-47 https://doi.org/10.2307/2682995
  17. Horst, P. (1941). The role of prediction variables which are independent of the criterion, The Prediction of Personal Adjustment, (P. Horst ed.), Social Science Research Council, New York, 431-436
  18. Margolis, M. S. (1979). Perpendicular projections and elementary statistics, The American Statistician, 33, 131-135 https://doi.org/10.2307/2683814
  19. Mitra, S. (1988). The relationship between the multiple and the zero-order correlation coefficients, The American Statistician, 42, 89
  20. Rawlings, J. O., Pantula, S. G. and Dickey, D. A. (1998). Applied Regression Analysis: A Research Tool, 2nd. ed, Springer-Verlag, New York
  21. Schey, H. M. (1993). The relationship between the magnitudes of SSR($x_2$) and SSR($x_2|x_1$): a geometric description, The American Statistician, 47, 26-30 https://doi.org/10.2307/2684778
  22. Sharpe, N. R. and Roberts, R. A. (1997). The relationship among sums of squares, correlation coefficients, and suppression, The American Statistician, 51, 46-48 https://doi.org/10.2307/2684693
  23. Trosset. M. W. (2005). Visualizing correlation, Journal of Computational & Gmphical Statistics, 14, 1-19 https://doi.org/10.1198/106186005X27004
  24. Velicer, W. F. (1978). Suppressor variables and the semipartial correlation coefficient, Educational and Psychological Measurement, 38, 953-958 https://doi.org/10.1177/001316447803800415