DOI QR코드

DOI QR Code

국내 금융시계열의 누적(INTEGRATED)이분산성에 대한 사례분석

Evidence of Integrated Heteroscedastic Processes for Korean Financial Time Series

  • 박진아 (숙명여자대학교 이과대학 수학통계학부) ;
  • 백지선 (숙명여자대학교 이과대학 수학통계학부) ;
  • 황선영 (숙명여자대학교 이과대학 수학통계학부)
  • Park, J.A. (Department of Stastics, Sookmyung Women's University) ;
  • Baek, J.S. (Department of Stastics, Sookmyung Women's University) ;
  • Hwang, S.Y. (Department of Stastics, Sookmyung Women's University)
  • 발행 : 2007.03.31

초록

시계열 자료 분석에서 ARCH류와 같은 조건부 이분산성 모형을 가정하고 분석하는 모형들이 많이 쓰이고 있다. 실제 우리나라 금융 시계열 자료들을 분석해 보면 비정상성을 나타내는 경우가 드물지 않게 나타난다. 즉, 단위근 형태의 비정상 패턴(integrated phenomenon)에 가까운 경우가 자주 나타난다. 본 논문에서는 다양한 국내 금융시계열 15개에(주가지수, 선물지수, 환율, 이자율 등) GARCH(1,1) 모형을 적합시켜 분산의 지속성을 확인하고, 각 데이터에 첨도(Kurtosis)와 적합된 IGARCH(1,1) 모형을 제시하고자 한다.

Conditionally heteroscedastic time series models such as GARCH processes have frequently provided useful approximations to the real aspects of financial time series. It is not uncommon that financial time series exhibits near non-stationary, say, integrated phenomenon. For stationary GARCH processes, a shock to the current conditional variance will be exponentially converging to zero and thus asymptotically negligible for the future conditional variance. However, for the case of integrated process, the effect will remain for a long time, i.e., we have a persistent effect of a current shock on the future observations. We are here concerned with providing empirical evidences of persistent GARCH(1,1) for various fifteen domestic financial time series including KOSPI, KOSDAQ and won-dollar exchange rate. To this end, kurtosis and Integrated-GARCH(1,1) fits are reported for each data.

키워드

참고문헌

  1. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327 https://doi.org/10.1016/0304-4076(86)90063-1
  2. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987-1007 https://doi.org/10.2307/1912773
  3. Hwang, S. Y. and Park, J. A. (2005). VaR(Value at Risk) for Korea financial time series, Journal of Korean Data and Information Science Society, 16, 283-288
  4. Hwang, S. Y. and Park, J. A. (2005). IGARCH and stochastic volatility: case study, Journal of Korean Data and Information Science Society, 16, 835-841
  5. Nelson, D. B. (1990). Stationarity and persistence in the GARCH(1,1) model, Econometric Theory, 6, 318-334 https://doi.org/10.1017/S0266466600005296