A Study on the Application of Mixed Weibull Function to Estimate Survivor Curves of Industrial Property

설비 생존곡선 추정을 위한 혼합형 Weibull 함수의 활용

  • Rhee, Hahn-Kyou (Department of Industrial & Management Engineering, Hannam University) ;
  • Kim, Kyeong-Tack (Department of Industrial & Management Engineering, Hannam University) ;
  • Oh, Hyun-Seung (Department of Industrial & Management Engineering, Hannam University)
  • 이한교 (한남대학교 공과대학 산업경영공학과) ;
  • 김경택 (한남대학교 공과대학 산업경영공학과) ;
  • 오현승 (한남대학교 공과대학 산업경영공학과)
  • Published : 2007.03.31

Abstract

일반 투자안의 의사결정에서와 마찬가지로 산업설비의 경제성 분석에서도 가장 중요한 결정 요소 중의 하나가 설비의 생존곡선 추정이다. 설비의 자산 가치가 감소하는 원인은 여러 가지가 있으나, 여러 원인 중 물리적 훼손이 과거의 산업설비에서는 가장 중요한 원인이었으므로 기존의 생존모형 분석에서는 lows 생존곡선을 이용하여 설비의 생존곡선을 추정하였다. 그러나 새로운 기술상의 변화로 인한 첨단 생산시스템의 설비교체 분석 시에는 적합지 않다. 따라서, 본 연구에서 제안된 혼합형 Weibull 함수를 이용하여 설비의 폐기 형태를 추정함으로써 설비들의 실제적인 생존곡선을 정확하게 파악할 수 있다.

Keywords

References

  1. Couch, F. V. B, Jr.; 'Classification of Type O Retirement Characteristics of Industrial Property,' M. S. thesis, Iowa State University of Science and Technology, Ames, Iowa, U.S.A., 1957
  2. Cox, D. R.; 'The Analysis of Exponentially Distributed Life-times with Two Types of Failure,' Journal of Research Statistical Society B, 21 : 411-421, 1959
  3. Elanat, R. C. and Jonson, N. L.; Survival Models and Data Analysis, John Wiley and Sons, Inc., New York, 2000
  4. Gross, A. J. and Clark, V. A.; Survival Distributions: Reliability Applications in the Biomedical Science, John Wiley and Sons, Inc., New York, 1995
  5. Hager, H. W. and Bain, L. J.; 'Inferential Procedures for the Generalized Gamma Distribution,' Journal of American Statistical Association, 65 : 1601-1609, 1967 https://doi.org/10.2307/2284343
  6. Harter, H. L.; 'Maximum Likelihood of the Parameters of Four Parameter Generalized Gamma Population from Complete and Censored Samples,' Technometrics, 9 : 159-165, 1965 https://doi.org/10.2307/1266326
  7. Harley, H. O.; 'The Modified Gauss-Newton Method for Fitting of Nonlinear Regression Function by Least Squares,' Technometrics, 3(2) : 269-280, 1961 https://doi.org/10.2307/1266117
  8. Jonson, N. I. and Kortz, S.; Distributions in Statistics: Continuous Univariate Distribution, Vol. 1., Boston : Houghton Mifflin, 1970
  9. Mann, N. R., Schafer, R. E., and Singpurwalla, N. D.; Methods for Statistical Analysis of Reliability and Life Data, John Wiley and Sons, Inc., New York, 1994
  10. Marston, A., Winfrey, R., and Hemstead, J. C.; Engineering Valuation and Depreciation, Iowa State University Press, Ames, Iowa, 1979
  11. Oh, H. S.; 'A Study on the Application of Weibull Survivor Curves to Estimate Mortality Characteristics of Industrial Property,' Journal of Society of Korea Industrial and Systems Engineering, 23 : 113-122, 2000
  12. Oh, H. S., Kim, C. S., and Cho, J. H.; 'Estimation of Retirement Rate on Domestic Industrial Property,' Journal of Society of Korea Industrial and Systems Engineering, 25(4) : 79-85, 2002
  13. Parr, V. B. and Webster, J. T.; 'A Method for Discriminating Between Failure Density Functions Used in Reliability Predictions,' Technometrics, 9 : 1-10, 1965
  14. Prentice, R. L.; 'Discrimination Among Some Parametric Models,' Biometrika, 62 : 607-614, 1975 https://doi.org/10.1093/biomet/62.3.607
  15. Russo, J. G.; 'Revalidation of Iowa Type Survivor Curves,' Ph.D. Dissertation, Iowa State University of Science and Technology, Ames, Iowa, U.S.A., 1978
  16. Stacy, E. W.; 'A Generalization of the Gamma Distribution,' Annual Mathematical Statistics, 33 : 1187-1192, 1962 https://doi.org/10.1214/aoms/1177704481
  17. Weibull. W. A.; 'A Statistical Distribution Function of Wide Applicability,' Journal of Applied Mechanics, 18 : 293-297, 1951
  18. Winfrey, R. and Kurtz, E. B.; Life Characteristics of Physical Property, ERI Bulletin 103, Iowa State University of Science and Technology, Ames, Iowa, U.S.A., 1931
  19. Winfrey, R.; Statistical Analysis of Industrial Property Retirement, Revised edition: ERI Bulletin 125, Iowa State University of Science and Technology, Ames, Iowa, U.S.A., 1967