Changes in the Activities of Antioxidant Enzymes during Chilling Stress in Chilling-Tolerant and Chilling-Sensitive Cultivars of Cucurbita spp.

내저온성과 민감성 호박 품종의 저온 스트레스에 대한 항산화효소의 활성 차이

  • 강남준 (원예연구소 시설원예시험장) ;
  • 권준국 (원예연구소 시설원예시험장) ;
  • 조용섭 (원예연구소 시설원예시험장) ;
  • 최영하 (원예연구소 시설원예시험장)
  • Published : 2007.03.30

Abstract

To determine whether antioxidant enzyme systems are related to chilling tolerance, changes of antioxidant enzyme activities during the chilling stress were determined in the leaves of a chilling-tolerant cultivar (Cucurbita ficifolia, cv. Heukjong) and a chilling-sensitive cultivar (Cucurbita moschata, cv. Jaerae 13). Leaves of chilling-tolerant plant have two major isoforms, Fe-SOD and Mn-SOD, at the Rm values of 0.20 and 0.52, respectively. In leaves of chilling-sensitive plant, two major isozymes of SOD was observed, one isoform is Mn-SOD at the Rm value of 0.20, and the other isoform is Cu/zn-SOD at the nm value of 0.58. When plants were treated with chilling stress, Cu/zn-SOD at the Rm value of 0.58 was newly expressed at 10 days after chilling stress in the chilling-tolerant plants, and density of this band increased at five days after chilling stress in the chilling-sensitive plants. One APX isozyme band was observed in unstressed plants of both cultivars. Under the chilling stress one APX isozyme band was newly expressed at 10 days after chilling stress in the chilling-tolerant cultivar. Significant genotype differences were observed fnr POD isozyme banding patterns such as few main isozyme bands in chilling-tolerant plants, and one band in chilling-sensitive plants. Densities of three POD isozyme bands at the Rm of 0.36, 0.40 and 0.54 increased at 10 days after chilling stress in the chilling-tolerant plants, while two bands at the nm of 0.36 and 0.54 increased at 10 days and 20 days after chilling stress in the chilling-sensitive plants, respectively. Activities of SOD, APX and POD significantly increased during five days after chilling stress in both cultivars. In the chilling-tolerant cultivar, activities of these enzymes were higher in chilling-stressed plant than in unstressed plants. However, activities of these enzymes in the chilling-sensitive cultivar decreased rapidly after five days of chilling stress, and were lower in chilling stressed plants than in unstressed plants.

저온에 대한 생육 반응이 다른 호박 두 품종 간 항산화효소의 활성 변화를 분석해 본 결과, 저온에 강한 '흑종'의 잎에는 Rm이 0.20인 Mn-SOD와 와 0.52인 Fe-SOD가 주된 밴드였고, 저온에 약한 '재래 13'호의 잎에는 an이 0.20인 Mn-SOD와 0.58인 Cu/Zn-SOD가 주된 밴드였다. 저온 처리 후 10일째에 '흑종'의 잎에는 Rm이 0.58인 Cu/Zn-SOD밴드가 발현되었고, '재래 13호'의 경우 밴드의 밀도가 증가하는 경향을 보였다. APX 밴드 발현 양상은 두 품종 모두 적온 처리에서는 차이가 없었지만, 저온 처리 후 10일경부터 저온에 강한 '흑종'의 잎에서 새로운 APX밴드가 발현되었다. POB밴드의 발현 양상은 품종간에 뚜렷한 차이가 있었는데, 적온 하에서 '흑종'의 잎에서는 4개의 주된 밴드가, '재래 13호'의 잎에서는 한 개의 주된 밴드가 발현되었다. 그러나 저온 처리시 '흑종'의 잎에서는 Rm이 0.36, 0.40 및 0.54인 밴드의 밀도가 급격하게 증가한 반면 '재래 13호'의 잎에서는 Rm이 0.36과 0.54인 밴드의 밀도가 증가하였다. 저온에 대한 내성과 관계없이 두 품종 모두 저온 처리 후 초기에는 SOD, APX 및 POD의 활성이 급격하게 증가하는 경향을 보였지만, 저온 처리 후 기간이 경과할수록 품종간 차이가 뚜렷하였다. '흑종'의 잎에서는 이러한 활성이 지속적으로 유지되었지만, '재래 13호'의 잎에서는 저온 처리 후 5일경부터 급격하게 감소하여 적온 처리구보다 낮은 활성을 보여 저온에 대한 품종간 내성차이를 잘 반영해 주었다.

Keywords

References

  1. Almansa, M.S., J.M. Palma, J. Janez, L.A. del Rio, and F. Sevilla. 1991. Purification of an iron containing superoxide dismutase from a citrus plant, Citrus limonum R. Free Radic. Res. Commun. 12:3119-328
  2. Anderson, M.D., T.K. Prasad, and C.R. Stewart. 1995. Changes in isozyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol, 109: 1247-1257 https://doi.org/10.1104/pp.109.4.1247
  3. Asada, K. 1992. Ascorbate peroxidase-A hydrogen peroxide scavenging enzyme in plants. Physiol, Plant. 85:235-241 https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
  4. Asada, K. 1994. Production and action of active oxygen in photosynthetic tissues, p. 77-109. In: C.H. Foyer, P.M. Mullineaux, Eds. Causes of photo-oxidative stress in plants and amelioration of defense system. CRC Press, Boca Raton
  5. Asada, K. 1999. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Ann. Rev. Plant Physiol, Plant Mol. Biol. 50:601-639 https://doi.org/10.1146/annurev.arplant.50.1.601
  6. Asada, K. and K. Kiso. 1973. Initiation of aerobic oxidation of sulfite by illuminated spinach chloroplasts. Eur. J. Biochem. 33:253-257 https://doi.org/10.1111/j.1432-1033.1973.tb02677.x
  7. Asada, K. and M. Takahashi. 1987. Production and scavenging of active oxygen in photosynthesis. pp. 227-287. In: D.J. Kyde, C.B. Osmond, C.J. Amtun. Eds. Photo-inhibition. Elsevier, Amsterdam
  8. Bannister, J.Y., W.H. Bannister, and G. Rotilio. 1987. Aspects of the structure, function and applications of superoxide dismutase. CRC Crit. Rev. Biochem. 22: 111-180 https://doi.org/10.3109/10409238709083738
  9. Beyer, W.F. and L. Fridovich. 1987. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Annal, Biochem. 161: 559-566 https://doi.org/10.1016/0003-2697(87)90489-1
  10. Bowler, C., M. van Montagu, and D. Inze. 1992. Superoxide dismutases and stress tolerance. Ann. Rev. Plant Physiol. Plant Mol Biol, 43:83-116 https://doi.org/10.1146/annurev.pp.43.060192.000503
  11. Bowler, C., W. van Camp, M. van Montagu, and D. Inze. 1994. Superoxide dismutase in plants. CRC Crit. Rev. Plant Sci. 13:199-218 https://doi.org/10.1080/07352689409701914
  12. Bradford, M.M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Annal. Biochem. 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  13. Bridges, S.M. and M.L. Salin. 1981. Distribution of iron-containing superoxide dismutase in vascular plants. Plant Physiol, 68:275-278 https://doi.org/10.1104/pp.68.2.275
  14. Chen, G.X. and K. Asada. 1989. Ascorbate peroxidase in tea leaves: Occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 30:987-998
  15. Clare, D.A., H.D. Rabinowitch, and I. Fridovich. 1984. Superoxide dismutase and chilling injury in Chlarella ellipsoidea. Arch. of Biochem. Biophys. 231 :158-163 https://doi.org/10.1016/0003-9861(84)90372-2
  16. Davies, K.J.A. 1995. Oxidative stress: The paradox of aerobic life. pp. 1-32. In C. Rice-Evans, B. Halliwell and G.G. Lunt. Eds., Free radicals and oxidative stress: Environment, drugs, and food additives, Biochemical Society Symposium 61, Portlant Press, London
  17. Elstner, E.F. 1987. Metabolism of activated oxygen species. pp. 253-315. In D.D. Davies, Ed. Biochemistry of metabolism: The biochemistry of plants. Vo. II. Academic Press, New York
  18. Foyer, C.H. 1993. Ascorbic acid. pp. 31-58. In: R.G. Alscher and J.L. Hess, Eds. Antioxidants in higher plants, CRC Press, Boca Raton, FL
  19. Fridovich, I. 1986. Biological effects of the superoxide radical. Arch. Biochem. Biophys. 247:1-11 https://doi.org/10.1016/0003-9861(86)90526-6
  20. Fridovich, I. 1991. Molecular oxygen: Friend and Foe. p. 1-5. In E.J. Pell, K.L. Steffen Eds., Active oxygen/oxidative stress and plant metabolism. American Society of Plant Physiologists, Rockville
  21. Graham, D. and B.D. Patterson. 1982. Responses of plants to low non-freezing temperatures: Proteins, metabolism and acclimation. Ann. Rev. Plant Physiol. 33:347-372 https://doi.org/10.1146/annurev.pp.33.060182.002023
  22. Gupta, A.S., J.L. Heinen, A.S. Haladay, J.J. Burke, and R.D. Allen. 1993. Increased resistance to oxidative stress in transgenic plants that overexpression chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. 90:1629-1633
  23. Heath, R.L. 1987. The biochemistry of ozone attack on the plasma membrane of plant cells. Advances Phytochem. 21:29-54
  24. Hernandez, J.A., E. Olmos, E.J. Corpas, F. Sevilla, and L.A. del Rio. 1995. Salt induced oxidative stress in chloroplast of pea plants. Plant Sci. 105:151-167 https://doi.org/10.1016/0168-9452(94)04047-8
  25. Lee, D.H. and C.B. Lee. 2000. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci. 159:75-85 https://doi.org/10.1016/S0168-9452(00)00326-5
  26. Longa, M.A., L.A. del Rio, and J.M. Palma. 1994. Superoxide dismutase of chestnut leaves, Castanes sativa: Characterization and study of their involvement in natural leaf senescence, Physiol. Plant. 92: 227-232 https://doi.org/10.1111/j.1399-3054.1994.tb05330.x
  27. McKersie, B.D., Y.R. Chen, M. de Beus, S.R. Bowler, D. Inze, K.D. Halluin, and J. Botterman. 1993. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol. 103:1155-1163 https://doi.org/10.1104/pp.103.4.1155
  28. Monk, L.S., K.V. Fagerstedt, and R.M.M. Crawford. 1989. Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol. Plant 76:456-473 https://doi.org/10.1111/j.1399-3054.1989.tb06219.x
  29. Prasad, T.K, M.D. Anderson, B.A. Martin, and C.R. Stewart. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell. 6:65-74 https://doi.org/10.1105/tpc.6.1.65
  30. Putter, J. 1974. Peroxidases. p. 685-690. In: H.U., Bergmeyer, Ed., Methods of enzymatic analysis 2. Academic Press, New York
  31. Salin, M.L. 1991. Chloroplast and mitochondrial mechanism for protection against oxygen toxicity. Free Rad. Res. Commun. 12-13:851-858
  32. Saruyama, H. and M. Tanida. 1995. Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and tolerant cultivars of rice (Oryza sativa L.). Plant Sci. 109:105-113 https://doi.org/10.1016/0168-9452(95)04156-O
  33. Shen, W., K. Nada, and S. Tachibana. 1999. Effect of cold treatment on enzymic and nonenzymic antioxidant activities in leaves of chilling-tolerant and chilling-sensitive cucumber cultivars. J. Japan. Soc. Hort. Sci. 68:967-973 https://doi.org/10.2503/jjshs.68.967
  34. van Camp, W., C. Boe1er, R. Villaroel, E.W.T. Tsang, M. V. Montagu, and D. Inze. 1990. Characterization of iron superoxide dismutase cDNAs from plants obtained by genetic complementation in Escherichia coli. Proc. Natl. Acad. Sci. USA 87:9903-9907
  35. van Camp, W., K. Capiau, M. van Montagu, D. Inze, and D. Slooten. 1996. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol. 112:1703-1714 https://doi.org/10.1104/pp.112.4.1703
  36. Walker, M.A. and B.D. McKersie. 1993. Role of the ascorbate-glutathione antioxidant system in chilling resistance of tomato. J. Plant Physiol. 141:234-239 https://doi.org/10.1016/S0176-1617(11)80766-2
  37. Wang, C.Y. 1996, Temperature preconditioning affects ascorbate antioxidant system in chilled zucchini squash. Postharvest Biol. and Technol. 8:29-36 https://doi.org/10.1016/0925-5214(95)00061-5
  38. Wise, R.R. and A.W. Naylor. 1987. Chilling-enhanced photoxidation. The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol. 83:272-277 https://doi.org/10.1104/pp.83.2.272
  39. Zhang, J. and M.B. Kirkham. 1994. Drought-stress induced changed in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol. 35:785-791 https://doi.org/10.1093/oxfordjournals.pcp.a078658