DOI QR코드

DOI QR Code

Amygdalin의 in Vitro 분해에 관한 연구

A Study on the Decomposition of Amygdalin Using an In Vitro Assay

  • 권훈정 (서울대학교 생활과학대학 식품영양학과) ;
  • 조용진 (서울대학교 생활과학대학 식품영양학과)
  • Kwon, Hoon-Jeong (Department of Food and Nutrition, College of Human Ecology, Seoul National University) ;
  • Jo, Yong-Jin (Department of Food and Nutrition, College of Human Ecology, Seoul National University)
  • 발행 : 2007.03.31

초록

Amygdalin is a cyanogenic glycoside which is commonly found in almonds, bamboo shoots, and apri-cot kernels, and peach kernels. Amygdalin was first hydrolysed into prunasin, then degraded into cyanohydrin by sequential two-stage mechanism. The objective of this study was to examine the amygdalin decomposition and cyanide formation at various in vitro conditions, including acid, enzyme and anaerobic microbes (AM) in human feces (HF). In acid hydrolysis mimicking gastric environment, amygdalin was degraded to cyanide up to 0.2% in specific pH. In contrast, enzyme assay showed higher cyanide generation either by ${\beta}$-glucosidase, or by incubation with microbe. In conclusion, we are convinced of cyanide generation are occurred mainly by microbiological activities of the gut flora up to 41.53%. After ingestion with some staff, the degree and site of degradation in an organism is a key parst of regulatory decision making of that staff.

키워드

참고문헌

  1. 지근억. 한국인 유아의 장내 세균 분포 (1992). 산업 미생물학회 특별강연. pp. 101-114. 1992년 춘계학술 발표대회 초록집
  2. Adiotomre, J., Eastwood, M.A., Edwards, C.A. and Brydon, W.G. (1990). Dietary fiber: In vitro methods that anticipate nutrition and metabolic activity in humans. Am. J. Clin. Nutr., 52, 128-134 https://doi.org/10.1093/ajcn/52.1.128
  3. Rauws, A.G., Olling, M. and Timmermann, A. (1982). The pharmacokinetics of amygdalin. Arch. Toxicol., 49, 301
  4. Rauws, A.G., Olling, M. and Timmermann, A. (1982). The pharmacokinetics of prunasin, a metabolite of amygdalin. J. Toxicol.: Clin. Toxicol., 19, 851-856 https://doi.org/10.3109/15563658208992518
  5. Alexander, L. and Christine, A.E. (2004). Differential fermentation of glucose-based carbohydrates in vitro by human faecal bacteria. Eur. J. Nutr., 43, 183-189 https://doi.org/10.1007/s00394-004-0457-3
  6. Ayernor, G.S. (1985). Effects of the retting of cassava on product yield and cyanide detoxification. J. Food Sci. Technol., 20, 89
  7. Bokanga, M., O'Hair, S.K., Narayanan, K.R. and Steinkraus, K.H. (1988). Cyanide detoxification and nutritional changes during cassava (Manihot esculenta Crantz) fermentation. In Proc. VIII Symposium of International Society for Tropical Root Crops. Howler. R.H., Ed., Bangkok, Thailand.,385
  8. Bourquin, L.D., Titegemeyer, E.C., Fahey, G.C. and Garleb, K.A. (1993). Fermentation of dietary fibre by human colonic bacteria: disappearance of short chain fatty acid production from and potential holding capacity of various substrates. Scand. J. Gastroenterol., 28, 249-255 https://doi.org/10.3109/00365529309096081
  9. Brent, W. (2003). Kinetic analysis of hexose transport to determine the mechanism of amygdalin and prunasin absorption in the intestine. J. Appl. Toxicol., 23, 371-375 https://doi.org/10.1002/jat.934
  10. Brink, N.G., Kuehl, F.A. and Folkers, K. (1950). Vitamin B12: the identification of vitamin B12 as a cyano-cobalt coordination complex. Science, 112, 354
  11. Cooke, R.D. (1978). An enzymatic assay for the total cyanide content of cassava (Manihot esculenta Crantz). Journal of the Science of Food and Agriculture, 29, 345-352 https://doi.org/10.1002/jsfa.2740290408
  12. Cummings, J.H. (1991). The control and consequences of vacterial fermentation in the human colon. J. Appl. Bacteriol., 70, 443-459 https://doi.org/10.1111/j.1365-2672.1991.tb02739.x
  13. Cyrille, K., Christle, H., Catherine, P., Martijn, V., Marleen, V.N. and Robert, H. (2002). Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model. Carcinogenesis., 23, 1009-1016 https://doi.org/10.1093/carcin/23.6.1009
  14. Daly, J., Tomlin, J. and Read, N.W. (1993). The effect of feeding xanthan gum on colonic function in man: correlation with in vitro determinant of bacterial breakdown. Br. J. Nutr., 69, 897-902 https://doi.org/10.1079/BJN19930089
  15. David Millerm, M.D. and Rovert, K.C. (1963). The digestion of Carbohydrates in the small Intestine. American Journal of Clinical Nutrition., 12, 220-227 https://doi.org/10.1093/ajcn/12.3.220
  16. De Bruijn, G.H. (1973). The cyanogenic character of cassava (Manihot esculenta). In Chronic Cassava Toxicity (edited by B.L. Nestel & R. MacIntyre)., 43-48. Ottawa, Canada: International Development Research Centre
  17. Miler, D. (1963). Am. J. clin. Nutr., 12, 220
  18. Edwards, C.A., Gibson, G., Champ, M., Jensen, B.-B., Mathers, J.C., Nagengast, F., Rummey, C. and Quehl, A. (1996). In vitro method for quantification of the fermentation of starch by human faecal bacteria. J. Sci. Food Agric., 71, 209-217 https://doi.org/10.1002/(SICI)1097-0010(199606)71:2<209::AID-JSFA571>3.0.CO;2-4
  19. Koyama, E., Kitazawa, K., Ohiori, Y., Izawa, O., Kakegawa, K. and Fujuno, A. (2003). In vitro metabolism of the glycosidic sweeteners, stevia mixture and enzymatically modified stevia in human intestinal microflora. Food and chem. Toxicol., 41, 359-374 https://doi.org/10.1016/S0278-6915(02)00235-1
  20. Espinoza, O.B., Perez, M. and Raminez, M. (1992). Bitter cassava poisoning in eight children: a case report. Vet Hum Toxicol., 34, 65-68
  21. Gerhard, J.S., Adalert, G. and Rauws, R.E. (1986). Intestinal first pass metabolism of amygdalin in the rat in vitro. Bio. Pharmacol., 35, 2123-2128 https://doi.org/10.1016/0006-2952(86)90580-0
  22. Halstrom, F. and Moller, K.D. (1945). Content of cyanide in human organs fro, cases of poisoning with cyanide taken by mouth, with contribution to toxicology of cyanides. Acta Pharmacol. Toxicol., 1, 18
  23. Bradbury, J.H. Egan, S.V. (1991). Amalysis of cyanide in cassava using acid hydrolysis of cyanogenic glucosides. J. Sci. Food Agric., 55, 277-290 https://doi.org/10.1002/jsfa.2740550213
  24. Bradbury, J.H., Bradbury, M.G. and Sylvia, V.E. (1994). Comparison of methods of amalysis of cyanogens in cassava. Acta Horticulturae, 375, 87-96
  25. Ji, G.E. (1994). Composition and distribution of intestinal microbial flora in Korean. Kor. J. Appl. Microbial. Biotechnol., 22, 453-458
  26. John, H.C., Martha, A. and Mclafferty, P.G. (1980). Role of the gastrointestinal microflora in amygdalin(laetrile)-induced cyanide toxicity. Bio. Pharmacol., 29, 301-304 https://doi.org/10.1016/0006-2952(80)90504-3
  27. Jose, M.C. (1988). Food toxicology (part A), Marcel dekker, New York, pp. 74
  28. Konstantinos, N.S., Gail, R. and Agamemnon, A.E. (1998). In vitro cytotoxicity following specific activation of amygdalin by $\beta$ -glucosidase conjugated to a bladder cancer-associated monoclonal antibody. Int. J. Cancer., 78, 712-719 https://doi.org/10.1002/(SICI)1097-0215(19981209)78:6<712::AID-IJC8>3.0.CO;2-D
  29. Lambert, J.L., Ramasamy, J. and Paukstelis, J.V. (1975). Stable reagents for the colorimetric determination of cyanide by modified König reactions. Analytical Chemistry, 47, 916-918 https://doi.org/10.1021/ac60356a036
  30. Legras, J.L., Jory, M., Arnaud, M.A. and Galzy, P. (1990). Detoxification of cassava pulp using Brevibacterium sp. R312. Appl. Microbiol. and Biotechnol., 33, 529
  31. Leon, B. (1998). Amygdalin degradation by mucor circinelloides and penicillium aurantiogriseum: mechanisms of hydrolysis. Arch. Microbiol., 169, 106-112 https://doi.org/10.1007/s002030050549
  32. McBurney, M.I. and Thompson, L.U. (1989). Effect of human faecal donor on in vitro fermentation variables. Scand. J. Gastroenterol., 24, 359-369 https://doi.org/10.3109/00365528909093060
  33. Meuser, F. and Smolnik, H.D. (1979). Processing of cassava into gari and other food stuffs. Starch/Starke, 32, 116
  34. Millingi, N., Poulter, N. and Rosling, H. (1992). An outbreak of acute intoxications from consumption of insufficiently processed cassava in Tanzania. Nutr. Res., 12, 677-687 https://doi.org/10.1016/S0271-5317(05)80565-2
  35. Mizuma, T., Ohta, K., Hayashi, M. and Awazu, S. (1992). Intestinal active absorption of sugar conjugated compounds by glucose transport system: implication of improvement of poorly absorbable drugs. Biochem. Pharmacol., 43, 2037-2039 https://doi.org/10.1016/0006-2952(92)90649-4
  36. Mortensen, P.B. and Norgaard-Andersen, I. (1993). The dependence of the in vitro fermentation of dietary fibre to short chain fatty acids on the contents of soluble monstarch polysacchrides. Scand. J. Gastroenterol., 2, 418- 422
  37. Olusegun, L.O. (1994). Eliminating cyanogens from cassava through processing: technology and tradition. Acta Horticulturae, 375, 163-174
  38. Osuntokun, B.O. (1994). Chronic cyanide intoxication of dietary origin and a degenerative neuropathy in Nigerians. Acta Horticulturae, 375, 311-321
  39. Oyewole, O.B. (1992). S. A. Effect of processing variables on cassava fermentation for fufu production. Trop. Sci., 32, 231
  40. Padmaja, G., Mathew, G. and Moorthy, S.N. (1991). Enhancement in starch extractability from cassava (Manhot esculenta Crantz) tuber through fermentation with a mixed culture inoculum. J. Root Crops, 17, 1
  41. Padmaja, G. (1995). Cyanide detoxification in cassava for food and feed use. Critical Review in Food Science and Nutrition, 35, 259-339
  42. Fomunyam, R.T. (1984). Hydrolysis of linamarin by intestinal bacteria. Can. J. Microbiol., 30, 1530-1531 https://doi.org/10.1139/m84-243
  43. Salvador, V., Chernoff, C., Barry, J.-L., Bertrand, D., Bonnet, C. and Delort-Labal, J. (1993). Sugar composition of dietary fibre and short chain fatty acid production during in vitro fermentation by human bacteria. Br. J. Nutr., 70, 189-197 https://doi.org/10.1079/BJN19930116
  44. Adewusi, S.R.A. (1985). On the mebabolism of amygdalin. 2. The distribution of $\beta$-glucosidase activity and orally administered amygdalin in rats. Can. J. Physiol. Pharmacol., 63, 1084-1087 https://doi.org/10.1139/y85-178
  45. Strugala, G.J., Rauws, A.G., Elsenhans, B., Rauws, A.G. and Forth, W. (1995). Small-intestinal transfer mechanism of prunasin, the primary metabolite of the cyanogenic glycoside amygdalin. Hum. Exp. Toxicaol., 14, 895-901 https://doi.org/10.1177/096032719501401107
  46. Sylvester, D.M., Jayton, W.L., Morgan, R.L. and Way, J. (l983). Effects of thiosulfate on cyanide pharmacokinetics in dogs. Toxicol. Appl. Pharmacol., 69, 265 https://doi.org/10.1016/0041-008X(83)90307-1
  47. Tewe, O.O. (1989). Detoxification of cassava products and effects of residual toxins on consuming animals. In Proc. FAO Expert Consultation Meeting on Roots, Tubers, Plantains and Bananas, 81
  48. Vesey, C.J. and Wilson, J. (1978). Red cell cyanide. J. Pharm. Pharmacol., 30, 20-26 https://doi.org/10.1111/j.2042-7158.1978.tb13147.x
  49. Weaver, G.A., Krauser, J.A., Miller, T.L. and Wolin, M.J. (1989). Constancy of glucose and starch fermentations by two different human faecal microbial communities. Gut., 30, 19-25 https://doi.org/10.1136/gut.30.1.19
  50. Majak, W., McDiarmid, R.E. and Hall, J.W. (1990): Factors that determine rates of cyanogenesis in bovine ruminal fluid in vitro. J. Anim. Sci., 68, 1648-1655 https://doi.org/10.2527/1990.6861648x
  51. Wood, J.L. and Cooley, S.L. (1956). Detoxification of cyanide by cystine. J. Biol. Chem., 218, 449-457
  52. Wood, T. (1966). The isolation, properties and enzymic breakdown of linamarin from cassava. Journal of the Science of Food and Agriculture, 17, 85-90 https://doi.org/10.1002/jsfa.2740170209