Structure and Properties of Polynorbornene Derivatives: Poly(norbornene dicarboxylic acid dialkyl ester)s and Poly(norbornene dimethyl dicarboxylate)s

  • Shin, Boo-Gyo (Department of Chemistry, Seoul National University) ;
  • Cho, Tai-Yon (Department of Chemistry, Seoul National University) ;
  • Yoon, Do-Y. (Department of Chemistry, Seoul National University) ;
  • Liu, Binyuan (Institute of Polymer Science & Engineering, Hebei University of Technology)
  • Published : 2007.03.31

Abstract

Poly(norbornene dimethyl dicarboxylate)s, (PNDMD)s, were prepared by addition polymerization with palladium(II) catalyst from pure exo-monomers, and their structure and properties were compared with those of poly(norbornene dicarboxylic acid dialkyl ester)s, (PNDADA)s. Both polymer series exhibited good solubility in general organic solvents and excellent thermal stability up to $330^{\circ}C$. Wide-angle X-ray scattering (WAXS) study indicated the presence of nano-scale layer-like order in amorphous PNDADAs, while PNDMDs showed random amorphous structure. The glass transition temperatures and dielectric constants of solid polymers were found to decrease as the alkyl side-chain length increases for both polymer series. However, PNDMDs showed lower glass transition temperatures and higher dielectric constants, as compared with those of PNDADAs containing the same alkyl substituents. This difference, caused by the higher side-group mobility of PNDMDs, may be closely related to the nano-scale order in amorphous PNDADAs and its absence in PNDMDs.

Keywords

References

  1. C. Janiak and P. G. Lassahn, Macromol. Rapid Commun., 22, 479 (2001) https://doi.org/10.1002/1521-3927(20010101)22:1<1::AID-MARC1>3.0.CO;2-T
  2. B. Rieger, L. S. Baugh, S. Kacker, and S. Striegler, Late Transition Metal Polymerization Catalysis, 1st Edition, Wiley-VCH, Weinheim, 2003, Chapter 4
  3. B. L. Goodall, G. M. Benedikt, L. H. McIntosh III, D. A. Barnes, and L. F. Rhodes, B.F. Goodrich Co., WO. 9514048 (1995)
  4. B. L. Goodall, W. Risse, and J. P. Mathew, B.F. Goodrich Co., WO. 9637526 (1996)
  5. N. R. Grove, P. A. Kohl, S. A. B. Allen, S. Jayaraman, and R. Shick, J. Polym. Sci.; Part B: Polym. Phys., 37, 3003 (1999)
  6. A. D. Hennis, J. D. Polley, G. S. Long, A. Sen, D. Yandulov, J. Lipian, G. M. Benedikt, L. F. Rhodes, and J. Huffman, Organometallics, 20, 2802 (2001) https://doi.org/10.1021/om000992h
  7. S. Breunig and W. Risse, Makromol. Chem., 193, 2915 (1992)
  8. J. K. Funk, C. E. Andes, and A. Sen, Organometallics, 23, 1680 (2004)
  9. B.-G. Shin, M.-S. Jang, D. Y. Yoon, and W. Heitz, Macromol. Rapid Commun., 25, 728 (2004)
  10. D. Craig, J. Am. Chem. Soc., 73, 4889 (1951)
  11. U. Okoroanyanwu, T. Shimokawa, J. Byers, and C. G. Willson, Chem. Mater., 10, 3319 (1998)
  12. B.-G. Shin, Ph.D. Thesis, Seoul National Univ., 2007. B. Liu, Y. Li, B.-G. Shin, D. Y. Yoon, I. L. Kim, L. Zhang, and W. Yan, in preparation
  13. M. D. Wedlake and P. A. Kohl, J. Mater. Res., 17, 632 (2002)
  14. T. F. A. Hasselwander, W. Heitz, S. A. Krügel, and J. H. Wendorff, Macromol. Chem. Phys., 197, 3435 (1996)
  15. C. Zhao, M. R. Ribeiro, M. N. Pinho, V. S. Subrahmanyam, C. L. Gil, and A. P. Lima, Polymer, 42, 2455 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  16. W. J. Chung and P. J. Ludovice, ACS Polym. Mat. Sci. Eng., 89, 289 (2003)
  17. M. Beiner, Macromol. Rapid Commun., 22, 869 (2001). https://doi.org/10.1002/1521-3927(20010801)22:12<869::AID-MARC869>3.0.CO;2-R
  18. S. Hiller, O. Pascui, H. Budde, O. Kabisch, D. Reichert, and M. Beiner, New J. Phys., 6, 10 (2004) https://doi.org/10.1088/1367-2630/6/1/010
  19. M. Wind, R. Graf, M. S. Renker, H. W. Spiess, and W. Steffen, J. Chem. Phys., 122, 014906 (2005)