Preparation and Characterization of Vapor-Grown Carbon Nanofibers-Reinforced Polyimide Composites by in-situ Polymerization

In-situ 중합법에 의한 기상성장 탄소나노섬유/폴리이미드 복합재료의 제조 및 물성

  • Park, Soo-Jin (Department of Chemistry, Inha University) ;
  • Lee, Eun-Jung (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Jae-Rock (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Won, Ho-Youn (Hanwha Chemical Research & Development Center) ;
  • Moon, Doo-Kyung (Department of Materials Chemistry, Konkuk University)
  • 박수진 (인하대학교 화학과) ;
  • 이은정 (한국화학연구원 화학소재연구부) ;
  • 이재락 (한국화학연구원 화학소재연구부) ;
  • 원호연 (한화석유화학 중앙연구소) ;
  • 문두경 (건국대학교 신소재공학과)
  • Published : 2007.03.31

Abstract

In this work, the mechanical and electrical properties, and thermal stability of vapor-grown carbon nanofibers/polyimide (VGCNFs/PI) composite film synthesized by in-situ polymerization were investigated in terms of tensile properties, volume resistivity and thermogravimetric analysis (TGA), respectively. From the results, the addition of VGCNFs with a certain amount into polyimide led to obvious improvement in tensile strength. The volume resistivity of the films was decreased with increasing the VGCNFs content and the electrical percolation threshold appeared between 1 and 3 wt% of VGCNFs content, which was probably caused by the formation of interconnective structures among the VGCNFs in a composite system. The thermal stability of the film was higher than that of pure PI one. This result indicated that the crosslinking of VGCNFs/PI Composites was enhanced by well-distribution of YGCNFs in PI resin, resulting in the increase of the thermal stability of the resulting composites.

본 연구에서는 제자리 중합에 의해 합성된 기상성장 탄소나노섬유/폴리이미드(VGCNFs/PI) 복합재료 필름의 기계적, 전기적 특성과 열안정성을 만능재료 시험기와 체적저항기, 열중량분석기를 통해 관찰하였다. 그 결과, VGCNFs 일정량 첨가되었을 때 복합재료 필름의 인장강도가 증가한 것을 관찰할 수 있었다. VGCNFs/PI 복합재료 필름의 체적저항 값은 VGCNFs 첨가량이 증가할수록 감소하였으며, 전기적 percolation threshold는 VGCNFs 함량 1과 3 wt% 형성되었는데, 이는 복합재료 내부에서 VGCNFs 상호간 네트워크의 형성으로 인하여 전기적 경로가 만들어졌기 때문이라 판단된다. VGCNFs가 PI 복합재료 필름의 열안정성은 순수한 이미드 필름보다 VGCNFs가 첨가됨에 따라 향상되었으며, 이는 충전제로 사용한 VGCNFs가 PI 수지에 잘 분간됨에 따라 복합재료의 가교화에 영향을 주어 VGCNFs/PI 복합재료 필름의 열안정성이 향상된 것으로 판단된다.

Keywords

References

  1. J. B. Donnet and R. C. Bansal, Carbon Fibers, 2nd Ed., Marcel Dekker, New York, 1990
  2. E. Fitzer, Carbon Fibers and Their Composites, McGraw-Hill, New York, 1992
  3. O. M. Kuttel, O. Groening, C. Emmenegger, and L. Schlapbach, Appl. Phys. Lett., 73, 2113 (1998)
  4. M. Endo, Y. A. Kim, M. Ezaka, K. Osada, T. Yanagisawa, T. Hayashi, M. Terrones, and M. S. Dresselhaus, Nano Lett., 3, 723 (2003) https://doi.org/10.1021/nl034136h
  5. M. K. Seo and S. J. Park, Chem. Phys. Lett., 44, 395 (2004)
  6. W. Wang, B. Poudel, D. Z. Wang, and Z. F. Ren, J. Am. Chem. Soc., 127, 180181 (2005)
  7. M. Kotaki, K. Wang, M. L. Toh, L. Chen, S. Y. Wong, and C. He, Macromolecules, 39, 908 (2006) https://doi.org/10.1021/ma0522561
  8. M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, and M. S. Dresselhaus, Carbon, 39, 1287 (2001) https://doi.org/10.1016/S0008-6223(00)00217-7
  9. M. K. Seo, S. J. Park, and S. K. Lee, J. Colloid Interface Sci., 285, 306 (2005) https://doi.org/10.1016/j.jcis.2004.10.068
  10. X. Wu, Z. Wang, L. Chen, and X. Huang, Carbon, 42, 1965 (2004) https://doi.org/10.1016/j.carbon.2004.03.035
  11. M. K. Ghosh and K. L. Mittal, Polyimide: Fundamentals and Applications, Marcel Dekker, New York, 1936
  12. L. A. Laius, Polyimide: Thermally Stable Polymer, Consultants Bureau, New York, 1987
  13. D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother, Polymides, Chapman and Hall, New York, 1990
  14. F. W. Harris, Polyimides, Blackie and Son, New York, 1990
  15. S. L. Ma, Y. S. Kim, J. H. Lee, J. S. Kim, I. Kim, and J. C. Won, Polymer(Korea), 29, 204 (2005)
  16. H. Ohya, V. V. Kudryavatsev, and S. I. Semenova, Polyimide Membranes: Applicstions, Fsbricstions, and Properites, Kodansha, Tokyo, 1996
  17. H. Viswanathan, Y. Q. Wang, A. A. Audi, P. J. Allen, and P. M. A. Sherwood, Chem. Mater., 13, 1647 (2001) https://doi.org/10.1021/cm002007l
  18. D. Hill, L. Y. Lin, L. Qu, A. Kitaygorodskiy, J. W. Connell, L. F. Allard, and Y. P. Sun, Macromolecules, 38, 7670 (2005) https://doi.org/10.1021/ma0509210
  19. L. W. Qu, Y. Lin, D. E. Hill, B. Zhou, W. Wang, X. F. Sun, A. Kitaygorodskiy, M. Suarez, J. W. Connel, and L. F. Allard, Y. P. Sun, Macromolecules, 37, 6055 (2004) https://doi.org/10.1021/ma0491006
  20. C. Park, Z. Qunaies, K. A. Watson, R. E. Crooks, S. E. Lowther, and J. W. Connell, Chem. Phys. Lett., 364, 303 (2002)
  21. L. Y. Jiang, C. M. Leu, and K. H. Wei, Adv. Mater., 16, 426 (2002)
  22. M. A. Masri, H. R. Kricheldorf, and D. Fritsch, Macromolecules, 32, 7853 (1999)
  23. M. K. Madhra, A. K. Salunke, S. Banerjee, and S. Prabha, Mscromol, Chem. Phys., 9, 203 (2002)
  24. B. K. Zhu, S. H. Xie, Z. K. Xu, and Y. Y. Xu, Compos. Sci. Technol., 66, 548 (2006) https://doi.org/10.1016/j.compscitech.2005.05.038
  25. P. Potschke, S. M. Dudkim, and I. Alig, Polymer. 44, 5023 (2003) https://doi.org/10.1016/S0032-3861(03)00451-8
  26. Y. Bin, M. Kitanaka, D. Zhu, and M. Matsuo, Macromolecules, 36, 6213 (2003) https://doi.org/10.1021/ma0301956
  27. D. Stauffer, Introduction to the Percolation Theory, Francis and Taylor, London, 1991
  28. S. J. Park, H. C. Kim, and H. Y. Kim, J. Colloid Interface Sci., 395, 44 (2004)
  29. P. T. Lillehei, C. Park, J. H. Rouse, and E. J. Siochi, Nano Lett., 2, 827 (2002)
  30. S. J. Park, K. S. Cho, and S. H. Kim, J. Colloid Interface Sci., 272, 384 (2004) https://doi.org/10.1016/j.jcis.2003.12.027