InP 다이오드에서 항복전압의 해석적 모델

Analytical Model for Breakdown Voltages of InP Diodes

  • 정용성 (서라벌대학 팬시완구디자인과)
  • 발행 : 2007.03.25

초록

InP의 전자와 정공의 이온화계수로부터 추출한 유효이온화계수를 이용하여 InP 다이오드의 항복전압을 위한 해석적 표현식을 유도하였다. 해석적 항복전압 결과를 $N_D=6\times10^{14}cm^{-3}\sim3\times10^{17}cm^{-3}$의 도핑 농도에서 수치적 결과 및 실험 결과와 비교하였다. 각 농도에 따른 해석적 항복전압은 수치 해석적 결과와 매우 잘 일치하였고, 실험 결과와는 10% 이내의 오차로 잘 일치하였다.

Analytical expression for breakdown voltages of InP diodes is induced by employing the effective ionization coefficient extracted from ionization coefficients for electron and hole in InP. The analytical results for breakdown voltage are compared with numerical and experimental results for the doping concentration, $N_D=6\times10^{14}cm^{-3}\sim3\times10^{17}cm^{-3}$. The analytical results show good agreement with the numerical data. Good fits with the experimental results are found for the breakdown voltages within 10% in error at each doping concentration.

키워드

참고문헌

  1. M. A. Littlejohn, J. R. Hauser, and T. H. Glisson, 'Velocity-field characteristics of $Ga_{1-x}In_xP_{1-y}As_y$ quaternary alloy,' Appl. Phys. Lett., vol. 30, pp. 242-244, 1977 https://doi.org/10.1063/1.89350
  2. L. Aina, M. Burgess, M. Mattingly, J. M. O'Connor, A. Meerschaert, M. Tong, A. Ketterson, and I. Adesida, '$0.33-{\mu}m$ gate-length millimeter-wave InP-channel HEMT's with high $f_t\;and\;f_{max}$ ,' IEEE Electron Device Lett., vol. 12, no. 9, pp. 483-485, 1991 https://doi.org/10.1109/55.116925
  3. J. D. Woodhouse, J. P. Donnelly, M. J. Manfra, and R. J. Bailey, 'P-AlInAs/InP junction FET's by selective molecular beam epitaxy,' IEEE Electron Device Lett., vol. 9, no. 11, pp. 601-603, 1988 https://doi.org/10.1109/55.9289
  4. I. Umebu, A. N. M. M. Choudhury, and P. N. Robson, 'Ionization coefficients measured in abrupt InP junctions,' Appl. Phys. Lett., 36(4), pp. 302-303, 1980 https://doi.org/10.1063/1.91470
  5. C. A. Armiento, S. H. Groves, and C. E. Hurwitz, 'Ionization coefficients of electrons and holes in InP,' Appl. Phys. Lett., 35(4), pp. 333-335, 1979 https://doi.org/10.1063/1.91111
  6. C. W. Kao and C. R. Crowell, 'Impact ionization by electrons and holes in InP,' Solid-State Electron., vol. 23, pp. 881-891, 1980 https://doi.org/10.1016/0038-1101(80)90106-9
  7. L. W. Cook, G. E. Bulman, and G. E. Stillman, 'Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements,' Appl. Phys. Lett., vol. 40, pp. 589-591, 1982 https://doi.org/10.1063/1.93190
  8. C. A. Armiento and S. H. Groves, 'Impact ionization in (100)-, (110)-, and (111) oriented InP avalanche photodiodes,' Appl. Phys. Lett., vol. 43, pp. 198-200, 1983 https://doi.org/10.1063/1.94279
  9. S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1987
  10. C. L. F. Ma, M. J. Deen, and L. E. Tarof, 'Device parameters extraction in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes,' IEEE Trans. on Electron Devices, vol. 42, no. 12, pp. 2070-2079, 1995 https://doi.org/10.1109/16.477763
  11. F. Osaka and T. Mikawa, 'Excess noise design of InP/InGaAs/InGaAs avalanche photodiodes,' IEEE J. Quantum Electron., vol. QE-22, pp. 471-478, 1986
  12. W. Fulop, 'Calculation of avalanche breakdown voltages of silicon p-n junctions,' Solid-St. Electron., vol. 10, pp. 39-43, 1967 https://doi.org/10.1016/0038-1101(67)90111-6
  13. W. J. Devlin, K. T. Ip, D. P. Leta, L. F. Eastman, G. H. Morrison, and J. Comas, Proceeding of International Conference on Gallium Arsenide and Related Compounds, St. Louis, pp. 510, 1978(Institute of Physics, London, 1979)
  14. K. Nishida, K. Taguchi, and Y. Matsumoto, 'InGaAsP hetero-structure avalanche photodiodes with high avalanche gain,' Appl. Phys. Lett., vol. 35, pp. 251, 1979
  15. Y. S. Chung, I. Y. Park, Y. I. Choi, S. K. Chung, 'Temperature Dependent Effective Ionization Coefficient for Si,' Microelectronic Engineering, vol. 51-52, pp. 535-540, 2000 https://doi.org/10.1016/S0167-9317(99)00461-X