Abstract
To jointly optimize the spatial registration and the exposure compensation, an iterative registration algorithm, the Lucas-Kanade algorithm, is combined with an exposure compensation algorithm, which is based on the histogram transformation function. Based on a simple regression model, a nonparametric estimator, the empirical conditional mean, and its polynomial fitting are used as histogram transformation functions for the exposure compensation. Since the proposed algorithm is composed of separable optimization phases, the proposed algorithm is more advantageous than the joint approaches of Mann and Candocia in the aspect of implementation flexibility. The proposed algorithm performs a better registration for real images than the case of registration that does not consider the exposure difference.
정합과 노출 보정을 동시에 최적화하기 위하여 반복적인 정합 알고리듬인 Lucas-Kanade 알고리듬을 히스토그램 변환에 기초한 노출 보정 알고리듬과 접목하였다. 단순 회귀 모델에 기초하여 비매개변수 추정인 실험적 조건 평균과 그의 다항식 근사를 이용하여 노출 보정을 시도하였다. 제안한 동시 최적화 알고리듬은 각 최적화 과정의 분리화가 가능하므로 기존의 Mann이나 Candocia의 동시 최적화 알고리듬에 비하여 구현의 융통성 측면에서 유리하다. 투사 공간 변환 관계를 가지는 실영상 들을 가지고 모의실험을 수행한 결과에서 보면 노출 보정을 고려하지 않은 경우에 비하여 좋은 성능을 얻음을 확인할 수 있었다.