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Perfect Tracking Control for Linear Systems with State Constraint

Dane Baang, Jin Young Chei*, and Hyungbo Shim

Abstract: This paper presents a new Perfect Tracking Control (PTC) scheme for linear systems
with state constraint. The proposed controller increases the number of the steps on-line for
perfect tracking to satisfy the given ellipsoid-type state constraint. The unavoidable step delay
that we impose is minimized by solving LMI feasibility problems and the possible feedback
information loss is avoided. The proposed schemes are easy to develop, theoretically simple and
clear, and include the conventional PTC as its special case.
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1. INTRODUCTION

In 1997, a new control scheme called Perfect
Tracking Control(PTC) has been proposed in [1-3}. In
this design, linear systems with the control action N -
times faster than sampler, have been considered.

This scheme basically adopted the design of N -
step open-loop control scheme to achieve perfect
tracking, i.e., exactly deriving the system output to the
reference value, after N control-steps where N
means the system order. This is why the scheme was
called N -delay control in its beginning in [1].

As the author mentioned in [3], this idea is based
the conventional dead-beat control [4,5], but differed
from it since the considered systems are multi-rate and
the tracking performance does not have step-delay, by
applying the reference in advance than the actual
reference.

This technique has been applied to the motion
control for dc-servo motor [2]. In [6], the PTC scheme
has been tried to control hard disk drive and visual
servoing. Similar scheme has been applied to hard
disk drive and servo motor again in [7]. How to
generate desired state trajectory from output reference
trajectory was studied in [8]. [3] contains most of
these results. In [3], several extensions of the main
scheme including delayed systems, multi-variable
systems, disturbance rejection, inter-sample observer
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were developed.

The basic condition for the perfect tracking is that
the control action speed is exactly N -times faster
than the sampling speed. This possibly restrictive
condition has been relaxed in [3] into slightly more
general case, i.e., control action is multiple-of- N
times faster than the sampling. This still restrictive
condition has been assumed in most of the researches
so far.

In this paper, we extend the existing PTC to state-
constrained linear systems. The proposed scheme
extends the system class into general m(= N) case
and achieves perfect tracking with delay, but satisfies
the given state-constraint. The proposed scheme
contains the conventional PTC as its special case, and
minimizes the unavoidable perfect tracking delay.

2. PTC FOR STATE-CONSTRAINED LINEAR
SYSTEMS

2.1. Conventional PTC [3]
Consider the single-input single-output (SISO)
controllable discrete-time system described by

x[k +1]= Ax[k]+bu[k], )
k)= cx[k],

where £ represents the discrete time, u[k] and
y[k] are input signal and output signal, respectively.

x[k]e R" is a state vector and N is the system order.

Assume that the full state information is available.

It is also assumed that the measurement of the
output y is performed at every N time steps. If the
discrete-time model (1) is derived from its
continuous-time counterpart, this means that the
output is sampled at the frequency of 1/(NT,) while

the input is applied at the frequency of 1/T, where
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T, is the sampling period. This difference between

the input and the output frequencies is the key to the
perfect tracking control. See [3] for more details.

Now we consider the behavior of this system
during N steps. In the external section, the system
acts with the time index i. Thus, the input sequence
for the next steps is defined as

Unlil=[uli], uli +1}, ... ,u[i+ N -1 . )

Using the time variable i, the system in the
external section’s point of view is described as

x[i+ N]= Ayx[i]+ ByUylil,
yli] = ex|i], G3)
Ay =AY,
By =14" b, AN 2p, ... b).
The control purpose is to derive the future output
y[i+ N} to exactly match to the desired output

trajectory y,[i] given in advance, i.c., to perform
perfect tracking at each N
sequence Uy [i] is designed as

steps. The control

Upylil = -By' Ay x[i]+ By x,li], 4)

where x,[i] denotes the desired state at the step i.
By putting (4) into (3), we see that the control (4)
leads to x[i+N]=x,[i], ie., perfect tracking is
performed at each N steps if each element of
Uyli] is sequentially injected to the plant during the
step durations from i to (i+N —1).

2.2. PTC for state-constrained linear systems

The main idea is to give step delay to the perfect
tracking performance and, in return for it, to obtain
additional design parameters for dealing with state-
constraint. We first start with an extended PTC
structure. Assume that the sensing of the system state
occurs at every m7, time point where m is any
fixed integer such that m> N. We next show that it
is possible to achieve dm-step perfect tracking where
d is any positive integer. Consider the following dm-
step control strategy for scalar design parameters

Y1sY255VYam-N-

Uil = Fx[i] + Kx4[i]
TV Yot oY d- N Pdm—N s

)

where

T T -1
F=_Bdm(Bdedm) Adm?
-1
K= Bgm (Bdegi-m) s

By, =[A™ b, 47 2p, .,b]
=[4%p, . 4Vb, By,

Adm = Adm >

whereas n, is a basis vector for the nullspace of
By, i.e., Bg,n =0, t=12,.,dn—N. Clearly, the
following holds.

xli+dm] = A X[+ [47 b . DJU gy li]
= Ade[i] + Bdedm [l]

(6)

Thus, the control (5) performs x{i + dm]= x,[i].
Now consider the state-constraint defined as follows.

Definition 1: Let x[k], £=0,1,2,...,0 be any
state value to the system (1). The ellipsoid type state-
constraint is defined as x[k] Ox[k]<1, k=0,1,2,
...,0, where Q is a pre-given positive definite matrix.

Assumption 1: The initial state x[i] and the

desired state x,[i] satisfy the state constraint given

in Definition 1.

We provide LMI conditions such that the state
trajectory of the system (1) satisfies the pre-given
state constraint. We start with the following two
definitions for state-constraint and one assumption.

Since we already developed the general form of dm
-step control in (5), the dm-step control that satisfies
the state constraint is given as follows.

Theorem 1 (PTC for State-Constrained Linear
Systems): Under the assumption 1, and for the system
(1), suppose that the system state is constrained by the
Definition 1. Then the dm-step control (5) achieves
dm-step perfect tracking and satisfies the state
constraint if, and only if the following LMI feasibility
problem (7) is solvable for a scalar d and a vector

ye Rdm—N'

1 [Cy + rqﬁy]r
Gt o )

c R(dm—l)(N+1)><(dm71)(N+l), g= 1,2,.., dm -1,

0 < diag

where
Tq = [Aqilb, ceey b, ONde—q] S RNde,
¢, = Ax[i]+ 7, [Fxli] + Kxg[i]] € RY,

T dm—N
Y=V o Yamn 1 €RT,

N = [f’ll, ceey ndm>N] S Rdmx(dmiN).

F,K,and n, are from (5).
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Proof: Since the input U,,[i] always performs

dm-step perfect tracking, we need to show only that
the feasibility of the LMI (7) is equivalent to the
satisfaction of the state-constraint in Definition 1.

The state x[q] is expressed as x[q]= 49x[i]
+T,Ugnli] =G, + rqﬁy. Thus, the state-constraint

[ql Oxg]<1, ¢=0,12,.. ,dm—1 (8)

can be expressed as
[Cy + 1M1 OIE, + 1, W] <1. ©)

Then, (7) is obtained from (9) by using schur
complements [9]. O

Fig. 1 represents how we can manipulate the system
state by using the proposed scheme in Theorem 1.
Until perfect tracking is performed, the state trajectory
by using the conventional PTC is unique and may
violate the state constraint, but the proposed dm-step
control strategy in Theorem 1 provides infinite
number of state trajectory candidates, determined by
the design parameters 4 and .

Therefore, if at least one candidate lies in the
ellipsoid representing the state-constraint, we can
select it to satisfy the constraint and achieve perfect
tracking. This job is done by the scheme and the LMI
solver for the LMI (7). Furthermore, they choose a
proper state trajectory that results in the minimal
perfect tracking delay.

Since the perfect tracking delay d needs to be
minimized for the fastest perfect tracking for
constrained linear systems, we fix ¢ =1 initially and
solve the feasibility problems for the LMI (7), i.e.,
finding any vector y that satisfies (7). If this LMI

feasibility problem is not feasible, d is increased by
one and the same procedure repeats until getting a
feasible solution.

The feasibility of the LMI (7) is the equivalent
condition to the success of the proposed control
scheme. However, it is difficult to provide a qualititive
condition for the feasibility of the LMI, since the
constraint can be imposed arbitrary hard and the
resulting ellipsoid representing the constraint can be

Newly-generated infinite

number of trajectory by the
proposed PTC *2

%%ﬂ
X1
x[1]
Ellipsoid representing the

state-constraint Trajectory of state by using
the conventional PTC

(unique)

Fig. 1. State constraint and the proposed PTC.

very small. Once the LMI is solved and the resulting
dm-step control is performed, then the same prodedure
repeats after dm-steps.

2.3. Usage of feedback information
Note that the property of the control in (5) is that,
during the steps i~i+dm—1, it does not use the

feedback information of the state even though the
feedback information of the state is available at every
m steps. The feedback information in most control
designs is important in a sense that there exist
uncertainties in any real plant, and the feedback itself
gives robustness to the uncertainties. Thus, the
proposed scheme in (5) is reformulated as follows to
avoid this possible information loss. Suppose that
Y1>Y25--Yam—n are obtained from (7) and let

YN, =N, peq T Y2 pg TV dm-NTdm-N, p~q>
p~q p~q

where % g is p ~q-th elements of n,,r=12,...,

dm— N. Since the feedback information at step i is
used for step i~i+m—1, the control inputs for
these steps are not changed, i.e.,

Ut — B i+ Ky X [+ YN s (10)

where F,_; and K, ; denote the submatrices of

F and K, consisting of the i-th row to the j-th
row of the matrices F and K, respectively. For
the steps i+m~i+2m-1, the control in (5) is
reformulated to use the feedback information obtained
at the step i+m, i.e.,

pi+meis2m-1

= (Fx[i]+ Kxg[1Dmery-2m + N1 -2m

= Flimat)-2m X[+ Kpiny-2mXalil + YNoniy-2m

=[~Bj B Bi)™ Yome1y~2m A" x[i]
+[=Bim BamBi) ™ Jmsty-2m*ali]
+YN(mi1)-2m

= K (me1y-2m (A7 X[ = 341D + YN o1y 21m

= ~K(ms1y-2m (AT A" x[i] = x4 [i])

(an

+YN(ni1)~2m

= —K(mity-2m (AT (x]i + m]
—[4™ % . BY[uld] ... uli + m-1]]")
= Xg D+ YN (pi1y-2m-

Similarly, for the steps i+mm~i+(n+D)m-1, n=
2,3,...,d —1, we obtain
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Ui+nm~i+(n+l)m—1

dm-— .
= _K(nm+1)i+nm~i+(n+l)m—l,(n+l)m (A (x[i + nm]
4™ b L BI[uli] ... uli+nm =101 ) — x,[i])

+ YN(nm+1)~(n+l)m'

(12)
Note that the control strategy (10)~(12) is equivalent
to the control (4) if the model (1) is exact and there is
no uncertainty.

3. EXAMPLE

Simulations have been performed for 6-axis
industrial robot model described as a fourth order
SISO plant.

[0 1 0 0] . -
0
ko a ko )
S J -
X= x+| Jp |u,
0 0 0 1 0
ooy _kth ol |
L /2 Sy Jry| - T
yz[O 01 O:Ix,
Jy =0.01063, J5 =0.01063,
kl = 276, k2 = 276,
¢ =0.027, ¢y =0.0022.

This plant has been discretized with the sampling
time 75 =0.01 seconds by using zero-order holder. The
initial states are at origin and the reference signal for
the output is sine wave with the amplitude equal to 1.

Fig. 2 shows the performance of conventional PTC
by (4). It is shown that perfect tracking is performed
since the error between y and the reference r (sine

wave), sampled at every m-steps, is almost zero. In
Fig. 2, one can see that the 2-norm of the
unconstrained state goes up to 100 when the
conventional PTC is used. The system state is now
constrained by Definition 1 with 9=0.01x1, ie.,

the 2-norm of the state should be equal to or less than
10. Fig. 3 shows that the state satisfies the given
constraint and the perfect tracking is performed. The
perfect tracking delay d increases when the reference
varies rapidly.

To test the effect of the usage of feedback
information, variations were added to the system
matrices 4 and b, of the continuous-counterpart of the
discrete plant (1). Fig. 4 shows the comparison resuits
between two controls for three different cases of
variations.

The left-side pictures represent the result when dm-
step control sequence (5) is directly used, and the

time(sec) time(sec)

Fig. 2. Conventional PTC (unconstrained).
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Fig. 3. State-constrained case by using Theorem 1.

right-side pictures represent the result when the
reformulated control (10)~(12) is used. In left-side
pictures, available feedback information can be lost
and the response oscillated relatively big, while the
right ones had small oscillation or better performance
since the scheme updated the control at each m-steps,
by using all available feedback information.

For the cases where m > N , the results was similar,
they were not always better than m =N case. This is
because the sampling time T, also varies according

to the increment of m and the corresponding
discretization should be performed.

4. CONCLUSIONS

A new Perfect Tracking Control (PTC) scheme for
linear systems with state constraints is proposed. The
proposed scheme extends PTC structure to more
general cases, and increases the the number of steps
for perfect tracking to satisfy the given state-
constraint. The proposed scheme includes the
conventional PTC as its special case and the
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Fig. 4. Effectiveness of feedback information usage.

unavoidable perfect tracking delay is minimized by
solving LMI feasibility problems. Future researches
would include robustness approach, extension to
MIMO linear systems.
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