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A Note on Discrete Interval System Reduction
via Retention of Dominant Poles

Younseok Choo

Abstract: In a recently proposed method of model reduction for discrete interval systems, the
denominator polynomial of a reduced model is computed by applying interval arithmetic to
dominant poles of the original system. However, the denominator polynomial obtained via
interval arithmetic usually has poles with larger intervals than desired ones. Hence an unstable
polynomial can be derived from the stable polynomial. In this paper a simple technique is
presented to partially overcome such a stability problem by accurately preserving desired real

dominant poles.
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1. INTRODUCTION

In many engineering problems, it is often desirable
to approximate a high-order system by a low-order
model since it facilitates simulation and
implementation of the system. Over the decades the
model reduction problem has been an ample area of
research and a variety of techniques have been
proposed for the order reduction of fixed-coefficients
systems.

Many systems have coefficients that are constants
but uncertain within a finite range. Those systems can
be modeled as interval systems. Recently, the model
reduction problem for interval systems has been
considered in the literature for discrete [1] and
continuous [2,3] systems. In [1], the denominator
polynomial of a reduced model was obtained so that
dominant poles of the original system are preserved in
the reduced model. The numerator polynomial was
then determined by matching some initial time-
moments. In [2,3], a technique was suggested to
construct the interval Routh array from which we can
obtain a stable denominator polynomial for the
reduced model. The method of [1] can be used for
continuous systems. However, the approach taken in
[2,3] cannot be applied to discrete systems.

This paper discusses the method of [1] in the
viewpoint of stability of the reduced model. In [1], the
interval poles of the original system were obtained
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using the results of [4]. Then the denominator
polynomial of a reduced model was computed by
applying interval arithmetic [5] to dominant poles.
Among others, the primary goal of retaining dominant
poles is to guarantee the stability of the reduced model.
In case of fixed-coefficients systems, the reduced
model is obviously stable if its denominator
polynomial is computed from dominant poles of the
original stable system. However, the situation is
different for interval systems with interval poles. The
denominator polynomial obtained by interval
arithmetic as in [1] usually has poles with larger
intervals than dominant poles. Consequently, an
unstable polynomial can be derived from the stable
polynomial. For example, assume that the following
two interval poles are to be retained in the second-
order reduced model

A =[-0.82,-0.8], 4, =[-0.92,-0.9].
Then, using the interval arithmetic, we obtain
(z-)z-A)= 2+ [1.7,1.74]z +[0.72,0.7544].(1)

Clearly the interval polynomial in (1) is unstable since

z* +1.74z+0.72 hasarootat z=-1.0621.

In this paper a simple method is given to obtain the
denominator polynomial of the reduced model that
accurately preserves desired real dominant poles,
which can be used to partially overcome the stability
problem in {1]. To this end it ts first shown that two
opposite edge polynomials of a polynomial with
distinct real interval poles can be represented via the
minima and maxima of its poles. Then the result is
applied to the model reduction problem.

The paper is organized as follows. In Section 2,
some definitions are given and the results of [4] are
briefly reviewed. The main results of this paper are
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contained in Section 3 with an example, and the paper
is concluded in Section 4.

2. PRELIMINARIES

2.1. Definitions
2.1.1 Interval arithmetic

The addition, subtraction and multiplication of two
intervals [a,b] and [c,d] are respectively defined as
follows [5].

Addition: |a,bl+[c,d]|=a+b,c+d]

Subtraction: [a,b]—{c,d]=[a—b,b—]

Multiplication: [a,b][c,d]=[min(ac,ad,bc,bd),
max(ac,ad,bc,bd)]

2.1.2 Interval polynomial
The family of (monic) polynomials C(z) defined by

C(2)=z2"+[cpqhCig 12" + -+ (o) 1z +[cgcf ]

with ¢; <¢;” is called an (monic) interval polynomial.

C(2) is said to be stable if every polynomial with fixed
coefficients in C(z) is stable.

2.1.3 Reciprocal eigenvector

For an nxn matrix A4 with distinct eigenvalues
A, 1<i<n, let x; be the eigenvector associated
with A;. Define

U:\:xl X2 X;‘ljl’
Y1
Y2

V=[UT! =

Yu

Then yy is called the reciprocal eigenvector associated

2.2. Interval poles

Consider an nth-order stable discrete interval
system described by the transfer function G(z) with
the interval denominator polynomial

C(2)=2"+[c e "+ [0 Tz +ep,cd ), (2)

where ¢; <c¢/ for each i. Suppose C(z) has only
distinct real interval poles. Let

0 1 0 0
0
A = : : : i
0 0 0 1
| Heg,col g1 ey, ] ~ep 1,61

3)

Then interval poles of (2) can be computed from the
interval eigenvalues of A, Denote 4’ by

Al =14, ~ A4, 4, + AA), (4)

where 4. is the center matrix of A" and A4 is
the perturbation matrix given by

P
Ag.. = S~ S

ni 2 H i:1,2,"',n (5)

with all other elements equal to 0. Assume that the
center matrix A4, has n distinct real eigenvalues /4,

1<i<n, and let x; and y; respectively be the
real eigenvector and reciprocal eigenvector associated
with the eigenvalue A,. Consider the signature
matrix

Sy =Isen(yi Xk, )i j=1.0,n- (6)

The matrix S, can be computed for any A4e Al in

the same way. If S; is the same for all 4e Al up

to the multiplication of —1, then the exact range of 4,

over A’ is given by [4].
A4y =& (4, = Ao S, A (A, +Ado S, (T)

where o denotes the component wise multiplica-tion,
and 4, (B) is the kth eigenvalue of B.

3. MAIN RESULTS

3.1. Representation of polynomial via interval poles
For the nth-order denominator polynomial given in

(2), assume its real interval poles /”Ll-[ =[AL A,
1<i<n, have been exactly computed by (7).
Without loss of generality, let

/111</12] <<t

ie., /11-+ < A;41 - It is now shown that two opposite edge

polynomials of C(z) can be represented by the minima
and maxima of its interval poles. We deal with several
cases separately.

Case 1: As are all negative and 7 is odd.

In this case each element of Sy in (6) is +1 or —1.
Then it follows from (7) that A, and A are
of A
Alternatively, A; and A, respectively are roots of

evaluated at opposite edge matrices

two opposite edge polynomials of C(z). On the other
hand, consider the real eigenvector x;, and real
reciprocal eigenvector y; corresponding to the
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eigenvalue 4, of A, From
Ax, = xg ®)

we can assume that

xe=[1 4 % zg—l]T

for each k. Then x;s have the same sign patterns.
Since the last row of ) in (6) is determined by x;
and the last element of y;, the last row of each S,
is given by [I =11 ~1---] up to the multiplication
of 1. Hence A; sand A s are roots of the following
two edge polynomials of C(z)

-1 2

ey 2"+ c;_3z"_3 +o+¢y,(9)
g(z)=z"+ c;_lz”_l + c,_l_zz"_2

p(zy=z"+¢, 2"

+Ch 32" et g .(10)

As noted above, if 4; is a root of p(z), then A4
isaroot of ¢(z), and vice versa.

Let /fl < ZQ << /in be the roots of p(z), where
4 €{A7, A7} . Replace ¢; in (9) by ¢ +k and
consider the root loci for £>0. As is well known [6],
the real intervals (-0,4] and ais Aaian ),
1<i<(n-1)/2, are parts of the root loci for £>0.

Then A4;,43,---,4, decrease, but 22,14,---,/1,,_1
increases as k starts to increase from zero. Hence we

have

jai—lzﬂgi—lalﬁiﬁn;la

ie.,
P === Nz =X (z=47), (11)
9D=(Cz-H Nz-BNz-K)(z=4;). (12)

Case 2: A/ s are all negative and  is even.
For this case, let

p(2)=z"+ c;,r_lz”‘I + c;_zzn_z + c;lr_3z"‘3 +otey,
(13)
q(2)=2"+c; 2"t el 2" P ey 32 T et o
(14)

Then, using the same arguments, we can show that

PR)=(z- A Nz-2 Nz -25)+(z=47), (15)
W) == Wz=2 Nz~ &)z~ 4;). (16)

Case 3: ﬂi] s are all positive.

In this case A; s and A; s are roots of the
following two edge polynomials of C(z)

" htgy,  (17)

q2)=2"+c 2" Vvt 2w, (18)

p(z)=2z"+ c;_lz"_l +C, 9z

Again, using the root locus theory, we get the same
results, i.e., (11) and (12) hold for # odd, and (15) and
(16) hold for n even.

Hence, for C(z) with real interval poles ﬂll <

/12{ <---<ﬂ,{, if A's are either all negative or all
positive, then two opposite edge polynomials of C(z)
can be determined from the minima and maxima of its
interval poles. The results can be used for the case
where the denominator polynomial has positive and
negative interval poles simultaneously. Suppose

/111 <ZQ] <--~<ﬂ,{, <0 and 0<l,{1+1 </1,{,+2 <---</1,{.
Then the coefficients of the interval polynomial can
be obtained by solving linear algebraic equations. For

example, let »=2 and assume /11] <0, 0< /121 If /111

and /1{ have been exactly computed by (7), then we

have
A2 +ef A +¢ =0, (19)
A v A +cf =0, (20)
3+ 25 +c5 =0, 2D
et A +cl =0, (22)

where the first two equations follow from (13)-(16),
and the last two equations are derived from (15)-(18).
Solving (19)-(22), we obtain the coefficients of the
second-order interval polynomial.

3.2. Model reduction

The results obtained above can be directly applied
to the model reduction problem. The denominator
polynomial of a kth-order reduced model can be easily
determined by computing two edge polynomials from

k real dominant poles, /11[ </121 <---</1,f , to be

retained in the reduced model. If As are either all

negative or all positive, then two opposite edge
polynomials of the kth-order denominator polynomial
Cy(z) can be computed as in (11), (12) (k¥ odd) or

(15), (16) (k even). Otherwise, equations of the form
(19)-(22) can be used to obtain the coefficients of
Ck (Z).

The polynomial with those interval poles may or
may not exist. If such a polynomial exists, it can be
exactly derived. Otherwise we obtain a polynomial
that closely approximates dominant poles.

Example: Consider a third-order interval system
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with the denominator polynomial

C(z) =2 +[1.82,1.821]z% +[0.908,0.91]z

(23)
+[0.0736,0.0738].

Each fixed-coefficients polynomial of C(z) has real,
negative, distinct roots [7]. Hence interval poles of
(23) can be exactly computed by (7) as

Al =[-0.92988,-0.896738],

A3 =[-0.82362,-0.79076],

24 =[-0.10037,-0.09965].

It is easily seen that two opposite edge polynomials of
C(z) are represented by

- )z=-2)Nz-2)=2°+1.8222 + 091z

24)

+0.0736, (

(2= Nz =3 Nz —243) =2 +1.8212% +0.908s 25)
+0.0738.

The second-order model retaining two dominant poles,

/111 and /121, is to be found. Applying the interval
arithmetic as in [1] leads to

Cy(z) = 2% +[1.6874,1.7535]z + [0.7091,0.7658]. (26)

The interval polynomial in (26) is not stable. For
example, z> +1.7535z+0.7091 has an unstable pole
at z=-1.1209. Conversely, we have from (4, ,4;)

and (ﬂ'l+ ’ 22_ )

(z—- A7 )z—-A) =22 +1.7206z+0.7353,  (27)
(2= Nz-23)=2> +1.72032+0.7386.  (28)

Then we obtain the second-order interval polynomial
Cy(z) = 22 +[1.7203,1.7206]z +[0.7353,0.7386] (29)

with the interval poles 4{ and A:.

4. CONCLUSIONS

In this paper it was pointed out that a recently
proposed method of model reduction for discrete
interval systems suffers a stability problem. To
partially overcome such a stability problem, it was
shown that the denominator polynomial with real
interval poles can be represented from its exactly
computed poles. Based on this result, a simple
technique was presented to obtain the stable reduced
model from the stable interval system by accurately
preserving desired dominant real interval poles. Only

interval systems with real interval poles were
considered in the paper. Further research is required to
deal with more general interval systems.
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