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Multi-Sensor Multi-Target Passive Locating and Tracking

Mei Liu, Nuo Xu, and Haihao Li

Abstract: The passive direction finding cross localization method is widely adopted in passive
tracking, therefore there will exist masses of false intersection points. Eliminating these false
intersection points correctly and quickly is a key technique in passive localization. A new method
is proposed for passive locating and tracking multi-jammer target in this paper. It not only solves
the difficulty of determining the number of targets when masses of false intersection points
existing, but also solves the initialization problem of elastic network. Thus this method solves the
problem of multi-jammer target correlation and the elimination of static false intersection points.
The method which dynamically establishes multiple hypothesis trajectory trees solves the
problem of eliminating the remaining false intersection points. Simulation results show that
computational burden of the method is lower, the elastic network can more quickly find all or
most of the targets and have a more probability of locking the real targets. This method can
eliminate more false intersection points.

Keywords: Data clustering, elastic net, false intersection points, passive locating and tracking.

1. INTRODUCTION

Eliminating the false intersection points is a
difficult problem in the bearing angles-only tracking
system [1]. In the passive tracking system the number
of targets is not known. Because of the existence of
false intersection points, determining the number of
targets exactly becomes a difficult problem. Most of
the methods of determining the number of targets are
based on the maximum likelihood principle. The
likelihood functions of number and state of targets are
firstly needed in this method and then are obtained by
using numerical method. When using this method, the
estimation of the number of targets is biased and the
estimation of state is prone to being trapped in local
minima. Unbiased estimation can be got by combing
this method with other algorithm (such as simulated
annealing algorithm).

However, the method above needs a great deal of
computation and the accurate algorithm is prone to
being trapped in local minima too. There are many
kinds of other methods to determine the number of
targets such as integer programming approach and
genetic algorithm. The integer programming approach
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involves simultaneously solving a large system of
equations [2]. This approach has poor scaling
characteristics which lead to impractical computation-
nal demands. Although the genetic algorithm can find
good solutions, this method involves a coding scheme
which makes the solution space increase exponentially.
Therefore it is computationally prohibitive with a
large number of targets and sensors [3].

Because the bearing angle information is not a
complete description of position, the false intersection
points appearing in the bearing angle measuring
system have great impact on the estimation of state.
Adding new sensors to the system can solve the
problem of false intersection points. Although using
more sensors, with the number of targets increasing,
some new false intersection points will appear.
Meanwhile when the number of sensors is larger than
three, this problem is NP-hard.

Locating multiple targets with passive sensors, in
essence, requires finding small clusters of points
generated by the intersection of pairs of direction
vectors emanating from each pair of sensors toward
each target. The size of the solution space to be
searched increases exponentially with the number of
targets and sensors. A number of attempts have been
made at solving the multi-target multi-sensor passive
tracking problem. These have included correlation
based techniques [4,5]), integer programming [6],
Lagrangian relaxation [2]. With the development of
neural network, such as genetic algorithm [7],
Hopfield neural network [8,9] and self-organizing
neural network, solving the problem of target tracking
and locating became one of the major factors leading
to the resurgence of interest in the field of neural
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network in the early 1990’s. Self-organizing neural
network which was proposed by Kohonen in 1981 is a
kind of self-organizing map (SOM). We will introduce
the multiple elastic modules (MEM) model which
generalizes the self-organizing principles of the SOM,
to make the model amenable to a wide range of
difficult optimization problems, such as computer
vision and DNA sequence. Hopfield neural network is
prone to being trapped in local minima with poor
solutions. Self-organizing neural network, such as the
elastic network, has been successfully applied to
geometric combinatorial optimization problems,
specifically the traveling salesman problem.

Applying multiple elastic modules model to the
passive tracking problem we can construct disjoint
fully connected subgraphs in order to solve the
combinatorial optimization problem having to identify
from a large number of possible selections of
intersection points, those that form a small spatial
cluster [10-12]. The disadvantage of this method is
that the number of targets must be known at first but it
is difficult to estimate the number of targets. The
selecting of initial value has great impact on the
elastic neural network. Proper initial value not only
cuts the computational burden down but also
conduces to the convergence of the method to correct
intersection points. Otherwise, elastic neural network
will not lock the correct intersection points and
diverge. Up till now, as a result of not having a proper
method to select initial value, the probability of
locating targets correctly is low. In the multi-target
multi-sensor passive tracking system, there are two
kinds of intersection points. One maintains large
spatial distribution and the other maintains small
spatial distribution. Applying multiple elastic modules
model for the optimization problem can eliminate the
first kind of intersection points but not the second
kind. These accidental target-like arrangements of
intersection points are referred to as ghost targets. The
only method for discriminating between real targets
and ghost targets is to monitor the configuration of
intersection points for a period of time. The
intersection points forming a ghost target will
eventually diverge whereas those associate with a real
target will maintain their small spatial distribution.
Hence the method of dynamic tracking can eliminate
the second kind of intersection points.

To cope with the problem encountered above, a
new method for solving the multi-target multi-sensor
passive tracking problem is proposed in this paper.
This method can be used for passive tracking multi-

jammer target and eliminate ghost targets dynamically.

The rest of this paper is organized as follows.
Section 2 gives problem description and method for
solving the problem. Section 3 illustrates data
clustering for direction finding cross localization. The
multiple elastic modules model is briefly introduced

in Section 4. Section 5 describes the approach of
eliminating ghost targets dynamically. Simulation
results and analysis are given in Section 6.
Conclusions are summarized in Section 7.

2. PROBLEM DESCRIPTION AND METHOD
FOR SOLVING THE PROBLEM

2.1. Problem description

The general problem can be stated as follows. A
number of passive sensors s, s=1,2,3,...... S are used
to detect the presence of targets in a particular
surveillance area. Each sensor makes a number of
measurements  Og; (i =1,2,3,---,Ny), indicating the
bearing angles of targets relative to the sensor location.
An example of passive tracking scenario with three
targets and three sensors is given in Fig. 1. Targets
positions are found by identifying those areas which
are bearing lines intersecting one another from
different sensors in the surveillance region. However,
duo to the geometry of this problem, the intersection
points can be sorted into two kinds. Even a perfect
conglomeration of intersection points does not
guarantee a real target, as seen the point K at the
center of Fig. 1. The other kind of intersection point is
point L.

This optimization problem can be formulated as
selecting intersection points of different types which
form a small cluster in space. In the particular case
with three sensors, there are three different
intersection types (Q=3) generated from pairings of
sensors {1, 2}, {1, 3} and {2, 3}, as show in Fig. 2.

If we associate a particular “type” to each possible
pairing of sensors and take S sensors for example, the
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Fig. 1. An example of passive tracking scenario with
three targets and three sensors.
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Fig. 2. Types of intersection points.
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total number of distinct types will be Q=CS2 =
S(S-1)/2. In this scheme, each pair of bearing

angles Hqi and 4.

i from two different sensors,

intersect at a specific point X (x;,;, Ygirj) given by

x,tan@,; - x, tan 6, Vr =Y,

tang, —tan6,; ’

(D

X . =
qirj
tand,, —tano,;

Ygirj = Vg T (Xgirj — %z ) tan b, 2)
Thus the coordinate of intersection points of the
same type can be given by Xy ={(xXg,Vgis) |1 =1,
2a"'a]1q>j = 1’2""7

tion points generated by bearing lines from two
different sensors is 7°.

T.}. The total number of intersect-

2.2. Method for solving the problem

Aiming at the problem appearing in multi-target
multi-sensor passive tracking system, a scheme is
proposed in this paper below.

2.2.1 Clustering with cross localization method

In locating multiple targets algorithm with passive
sensors, determining the number of targets in essence
is to find small clusters of points generated by the
intersection of pairs of direction vectors emanating
from each pair of sensors toward each target. The
method is a kind of data clustering algorithm [13].
Using the clustering algorithm, the number of targets
and the centers of clusters in surveillance area can be
obtained. Because of the number of elastic networks
having been determined, the searching area gets small
and the initial value of the networks can be got. This
clustering method not only cuts the computational
burden down but also conduces to the convergence to
correct intersection points and reduce the probability
of locking a false target.

2.2.2 MEM description

After determining the number of targets, we can
construct N disjoint fully connected subgraphs, with
each subgraph whose initial value is in the
neighborhood of the center of cluster representing a
expectation templet. With the attraction of the cluster
of target, the receptive field of the elastic neural
network converges and locks a target at last.

2.2.3 Establishing trajectory trees

There are three kinds of “targets”which are locked
by the elastic neural networks: the real targets, the
first kind of intersection points and the second kind of
intersection points which are referred to as ghost
targets. Because of having got the proper initial value,
the elastic neural network can not only lock real
targets quickly but also increase the locking

probability. If the number of real targets is less than 10,
the number of the first kind of intersection points is
small and the number of the second kind is large
relatively. Take 10 targets for example, there is no
intersection points of the first kind while there are 3
intersection points of the second kind. These ghost
targets will breakup over time. So it is necessary to
discriminate between real targets and ghost targets in
a dynamic environment. A practicable algorithm is
obtained by establishing multiple hypothesis
trajectory trees [14] and summing three-continuous-
step estimation covariance of every possible trajectory.

3. DATA CLUSTERING FOR DIRECTION
FINDING CROSS LOCALIZATION

The aim of this algorithm is to obtain the center
G;(i=1,2,---K) of every cluster, the number K of

clusters and the results of data clustering. We will
analyze the clustering feature of the dataset

d ={x;,%p,-,x,}(D < R"). Suppose every sample
x;(i=1,2,---,n) of D is a particle and its weight is 1.
For the sake of simplicity of computation, suppose the
coordinate of x; is integer and there are K clusters
whose centers are G;(i=1,2,---K) in D. The clusters
-+,K). The algorithm

involves the following 4 steps: iteration, selecting
initial clusters, looking up table and diversity
incorporating.

can be referred toas C;(i=1,2,

3.1. Iteration
In iteration, the initial value of & can be set small

and o, Wwhich is given at first is larger than J.

The value of parameter a, which adjusts & during

iteration is larger than 1 and smaller than 2.

1) Get the number N; of samples in the neighborhood
U(x;,0) of x; which belongs to dataset D.

2) The weight m; of x;eU(x;,6) can be set to

mA

s =—_ and they can form a new system
J

U(x,.,é'). The weight 77; is used to select initial

clusters. Get the center X¥ and weight m of
U(x;,5).

3) All the ¥ and 7 comprise a new dataset D,

and iterate in D : If ax; =)Ej

integrated into one particle ¥ whose weight is

they can be

m=rm; +m;. After one iteration, we can get D

from D. Set 6 =6xa,, if 6>,

max>

8 = 8pax- Set D =D and then go back to step 1).

we can get
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3.2. Selecting initial clusters

After iteration, it is necessary to find shrinkage
center of particle whose weight is large obviously. The
method can be illustrated as follows. We can arrange
the particles obtained after iteration from large to
small according to the weight: my >m, > >

Then define qi:mi/mi+1(i=1,2,...,nl~l) and get

i = min i. Kg is athreshold which is given at first.
7>Kg

As aresult, {' is the number of initial clusters which
we want to get and X[, X, X correspond to
1

My My,eees i, are the positions of centers of the

initial clusters.

3.3. Looking up drift table

We can define the center x' of U(x,5) as the
drift position of x and register the drift position. After
iteration, all the particles in D get drift positions
which can form a table of drift positions. In the later
iteration, it is necessary to update the table. We can
look up the table and classify drift particle
x(i=12,- -,i') into initial cluster i when the iteration
algorithm is over.

3.4. Diversity incorporating
Suppose we have obtained xj,x,,--,x; which are
1

the centers of
x17x2’...qxiv

initial clusters correspond to
when the iteration is over. Refer i
initial clusters after looking up the drift table as
Ci(i=1,2,--,i). 8y and V, are thresholds. The
diversity incorporating algorithm which aims at
judging whether C;» and C'j can be incorporated is
illustrated below.
1) With all xeD, get U(x,0,) which satisties
boundary conditions 3x;, x; € U(x,8p), x; eC;,

X; € ij.

2) Incorporate all the U(x,0,) which are obtained
in step 1) as one boundary set U.

3) We can get the diversity of U, C; and C'j and
then compare the diversity of U with the smaller

average diversity between C; and C] Suppose
the average diversity of C, is smaller, if
the diversity of C;
the diversity of U
C; and C] The center G;(i=1,2,---K) of every

cluster and the number of clusters can be obtained
as a result of this algorithm.

<Vy, we can incorporate

4. THE MULTIPLE ELASTIC MODULES
MODEL

The MEM model is presented as a significant
extension to self-organizing map (SOM). Applying
this representation to the passive tracking problem we
can construct disjoint fully connected subgraphs. Take
three sensors and N targets for example, we will show
the algorithm.

4.1. Configuration of MEM

MEM is a kind of network with inner and outer
layers. The neurons of outer layer are initialized to
position vectors of sensors. The neurons of inner layer
can be separated into N subgraphs which are
composed of three fully connected neurons. At the
same time, the subgraph is not connected together.
Each neuron i in the inner layer responds to a specific
feature type f. The associated weights connecting
neurons of outer layer with neurons of inner layer are
position vectors of intersection points while the
associated weights connecting neurons of inner layer
are distance between them.

The configuration of MEM is illustrated in Fig. 3.
A unique feature of the MEM model is the use of a
dynamic receptive field »; (RF) with each neuron i.
The size of a neuron’s RF is determined according to

n=pilte t & 3)

In (3), h; and e; represent locking value and
expectation value of the neuron i respectively. The
noise parameter & is a small constant which

determines the minimum RF size of all neurons. The
p; term is a measure of the local deformation of the
graph about neuron i. This parameter embodies the
“goodness” of the current arrangement of neurons (the
state of the network) as a solution for the desired
objective function. For the passive tracking
application, our desired objective is to locate the
smallest spatial cluster of intersection points of
different types. Therefore, p; can be defined as

b= ZHmi_mj Il 4

JeL;

Outer layer (3 type intersection)

Fig. 3. The configuration of MEM.
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where L;={j|g; =1}. g1 if neuron i is a direct

neighbor of neuron j. In other words, L; is the set of all
neurons directly connected to neuron i. In this
formulation p; is the sum of all distances between
neuron i and its neighboring neurons. Take three
sensors for example, we can make a simplification to
this function by setting p; equal to the perimeter of the
triangle formed by the three neuron vertices. All
neurons in the same triangle module can thus share
the same p; value. m; is the position of the neuron i.

4.2. The algorithm of MEM
Formally, the operations performed by the MEM
algorithm involve the following steps.
1) Randomly assign neurons to different position
vectors.

2) Randomly select an intersection point X, o
(Q;=1,2,3) oftype Q as input.

3) Construct a set B according to the neurons of the
same type.

B={i|X;€0n| Xp ~ X; <7}

4) If set B is empty, we repeat this procedure by
picking another random intersection point. When a
nonempty set B is generated, the neurons within
this set are allowed to compete, using a WTA

mechanism, to find the closest neuron X, ,* to the

1

input point: X =min | Xg, —X; ||
ieB ¢

5) Adjust the locations of winning neuron and its
neighbors according to

X; = X; +a(Xg - X)),

where o and S, denote the learning rate. The
value of a is less than 1. ﬂj is defined as

B = OPi Ty update rule implements a
pi+1
nonlinear elastic mechanism on the elastic
modules. The elasticity parameter 7 is used to
control the degree of elasticity of these modules.
6) Gradually adjust the receptive field R; and R;.
7) When p;<3&, we can determine that the
subgraph has locked a target. The center of the
subgraph can be considered as the position of

3
target: X, =% z Xg,, where X is the position
=1
vector of the neuron in the subgraph.
8) Go back to step 2).

5. THE APPROACH OF ELIMINATING
GHOST TARGETS DYNAMICALLY

A practicable algorithm is obtained by establishing
multiple hypothesis trajectory trees and summing
three-continuous-step estimation covariance of every
possible trajectory in order to discriminate between
real targets and ghost targets in a dynamic
environment.

The Nearest Neighbor Algorithm is usually used to
implement data association in bearings-only tracking
system. In the association gate of the target, the
nearest measurement to the predictive value can be
taken as the new measurement of the target in order to
implement data association. However, the nearest
measurement to the predictive value may not be the
real measurement of the target. As a result of dense
density of targets, the false probability of association
is high. It is difficult to achieve the aim of engineering
to adopt some optimization algorithm with optimal
performance because of complicated computation of
likelihood probability. An association algorithm of
tracking which is easy to implement in engineering is
proposed in this paper.

Suppose Z(k)={z,~(/c)}l."l1 denotes a group of

measurements got in the scanning of time K, m

denotes the number of measurements.

1) Utilize Kalman filtering algorithm to achieve the
predictions of the next time with the trajectories
established in the scanning of time k-1. Then
establish the association gate of every target.

2) Seeing about the number m of measurements in
the scanning of time k. If m is larger than the
number of trajectories established in the scanning
of time k-1, we can get the conclusion that there
are new targets or false alarms appearing. Then we
can associate measurement z{k) in every
association gate with the trajectory, establish
multiple hypothesis trajectory trees and calculate
the estimation covariance of every trajectory.

3) Seeing about the number of measurements in the
scanning of time k+1 and achieve the predictions
of next time with the trajectories having been
established. Then we can associate measurement
z{k+1) in every association gate with the
trajectory, establish multiple hypothesis trajectory
trees and calculate the estimation covariance of
every trajectory.

4) Seeing about the number of measurements in the
scanning of time k+2 and repeat the process of
step 3).

5) Add up the estimation covariance of every
trajectory in the trajectory trees in steps 2), 3) and
4) and arrange the estimation covariance of every
trajectory from small to large.

6) Ascertain the trajectory with the smallest
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accumulated covariance in trajectory trees. If there
are no trajectories sharing the same measurement,
we can determine the real trajectories and
eliminate the trajectory branches. If there are
trajectories sharing the same measurement, we can
determine a real trajectory with the smallest
accumulated covariance and search other
trajectories of the trajectory trees according to the
estimation covariance arranged from small to large
of every trajectory until find a trajectory sharing
no measurement with the trajectory having been
established. Thus we can consider this trajectory
as a real trajectory. See about whether there are
new measurements appearing according to steps 2),
3) and 4). If there are new measurements
appearing, we will judge whether they belong to
new targets. If the new measurements belong to
new targets, we will establish new trajectories of
targets. Otherwise we will preserve the redundant
measurements of time k+1 and k+2 and then judge
whether there are new targets appearing according
to the measurements of time £+3. Seeing about the
number of measurements in the scanning of time
k+2 and repeat the process of step 3).

The above approach is adopted with unity detection
probability. Aiming at the scenario with non-unity
detection probability, utilize Kalman filtering
algorithm to achieve the predictions of time k with the
trajectories established in the scanning of time k-1. If
there are no measurements appearing in the
association gate, replace filtering value with
predictive value. Repeating this process on moments £,
k+1, k+2, k+3 successively, if there are no
measurements in the association gate for 4 moments
successively, the trajectory interrupts.

6. SIMULATION RESULTS AND ANALYSIS

6.1. MEM for tracking in static environment

The unit of the coordinate is kilometer in the
simulation. There are ten targets in a rectangle area
whose coordinates are (0, 0), (0, 200), (140, 200) and
(140, 0). Three sensors whose coordinates are (50, 0),
(60, 0) and (70, 0) are arranged on a straight line. The
ten targets are distributed randomly. Each sensor can
track all the targets and the tracking error of angle is
0.01 radian. The intersection points of bearing lines
from different sensors can denote targets. The
parameters selected in the simulation are given as
follows.

The learning rate o of the winning neuron is 0.05.
The elasticity parameter 7 of the neighboring
neurons of the winning neuron is 3. The noise
parameter & is 0.01. The covariance matrix of

.. |0
measurement noise 18
0 0.1

} and the covariance

0.001 0 0 0
0 0001 O 0
0 0 0.001 O
0 0 0 0.001

Table 1 gives the results of comparing MEM model
with MEM model based on clustering algorithm. The
simulation results of MEM model is given in Figs. 4
and 5. The simulation results of MEM model based on
clustering algorithm is given in Figs. 6 and 7.

There are ten targets in Fig. 5. After 100 iterations,
there are 8 real targets and 2 ghost targets locked
respectively using MEM algorithm and the time of
computation is 2.672 second. After 50 iterations, there
are 10 real targets and 3 ghost targets locked
respectively using MEM based on clustering
algorithm under the circumstances that the number of
targets is not known and the time of computation is
0.009 second. Using the clustering algorithm, we can
obtain the centers of clusters, the number of clusters
and the information of the clusters. Because of these,
the number of targets and elastic networks can be got.
At the same time, the networks can be initialized near
the centers of clusters. In the MEM based on
clustering algorithm, the elastic networks search
targets in the appointed clusters. So the computational
burden of the method is lower, the elastic network can
more quickly find all or most of the targets and the
performance of the MEM can be improved. Because
of not having eliminated all the ghost targets, we can

matrix of process noise is

Table 1. The contrast between MEM and MEM based
on clustering.

Number of | Number of Time of
real targets | targets locked |computation
MEM based | 10 0.009s
on clustering
MEM 10 8 2.672s

S interzection
#—%—% 3 neuron
a0 L oo true target |4

7 itkm)

x (md

Fig. 4. The initial random state of the modules and the
measures of targets in MEM.
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Fig. 5. The network state after 100 iterations.
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Fig. 7. The network state after 50 iterations.

discriminate between real targets and ghost targets in
a dynamic environment in the simulation below.

6.2. Eliminate ghost targets in dynamic environment
The intersection points of ghost targets will not

maintain their small spatial distribution when

monitored for a period of time. The parameters in the

simulation are as above. Ten targets are in uniform
linear motion. We can utilize Kalman filtering
algorithm to track the targets and calculate the overall
error by establishing the trajectory trees. If the error is
larger than the threshold, it can be eliminated. By
using samplings during 20 scanning, we can get the
real trajectories of targets as shown in Fig. 8.

Although there are different ghost targets appearing
during every scanning, these ghost targets will
breakup over time by using tracking targets in a
dynamic environment. So the ghost targets can be
eliminated dynamically.

Aiming at the scenario with non-unity detection
probability, if there are no measurements in the
association gate for 4 moments successively, the
trajectory interrupts. 50 Monte Carlo simulations of
10 targets with non-unity detection probability are
carried out and simulation results are shown in Table 2.
During one Monte Carlo simulation take Target 1 for
example, the trajectory interruption probability is 0.02
with detection probability 0.875. The simulation
results illustrate that during the process of tracking the
trajectory interruption probability will be higher if the
detection probability is lower.

. —— true trajsciory
130+ weue trajectory estimated
=+ rmovement direction

target 2

120 targei 9 % \ target 6

1Mo} %, rergsts /;’“‘ g A
'~ 100 -
=
£
= 98y target T 1

target 3
gt f - y
f target 4

70F oy

Y I target 10|

= L 1 1 L L

20 40 =0] &0 100 120 140
s b km)

Fig. 8. The trajectories of targets.

Table 2. The probability of trajectory interruption
with non-unity detection probability (DP).

P 0.950(0.90010.875]0.850}0.825]0.800
Target1| 0 0 [0.020.02]0.04 004
Target2| 0 0 0 |0.06|0.04 | 0.08
Target3| O 0 [002] 0 |0.02]0.06
Target4 | 0 0 0 {002| 0 |0.08
TargetS| 0 0 0 0 1004004
Target6| 0 0 0 10.02]0.04]0.06
Target7( O 0 0 0 |0.04]0.08
Target8| 0 0 0 0 |0.04|0.04
Target9| 0 [0.02]|0.02]004| 0 |0.06

Target 10} 0 0 0 10.02]0.04}0.08
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7. CONCLUSIONS

Direction finding cross localization is usually used
in passive tracking. But this method will produce a lot
of false intersection points. Eliminating these false
intersection points correctly and quickly is difficult in
passive localization. A new method is proposed for
passive locating and tracking multi-jammer target in
this paper. It not only solves the difficulty of
determining the number of targets when masses of
false intersection points existing, but also solves the
initialization problem of elastic network. The method
which dynamically establishes multiple hypothesis
trajectory trees solves the problem of elimination of
the remaining false intersection points. Simulation
results show that computational burden of this method
is lower, the elastic network can more quickly find all
or most of the targets and have a more probability of
locking the real targets. This method can eliminate
more false intersection points. Under the
circumstances that the number of targets is 10, all the
ghost targets can be eliminated by using this method
combining static with dynamic environment. It is
meaningful to apply this method for anti-aircraft
missile weapon integrated system.
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