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Robust Stabilization of Decentralized Dynamic Surface Control
for a Class of Interconnected Nonlinear Systems

Bongsob Song

Abstract: The analysis and design method for achieving robust stabilization of Decentralized
Dynamic Surface Control (DDSC) is presented for a class of interconnected nonlinear systems.
While a centralized design approach of DSC was developed in [1], the decentralized approach to
deal with large-scale interconnected systems is proposed under the assumption that
interconnected functions among subsystems are unknown but bounded. To provide a closed-loop
form with provable stability properties, augmented error dynamics for N nonlinear subsystems
with DDSC are derived. Then, the reachable set for errors of the closed-loop systems will be
approximated numerically in the form of an ellipsoid in the framework of convex optimization.
Finally, a numerical algorithm to calculate the L, gain of the augmented error dynamics is
presented.

Keywords: Decentralized control, dynamic surface control, interconnected systems, reachable

set, L, gain.

1. INTRODUCTION

Due to dramatic advances in the field of electron-
ics and mechatronics, complexity of control systems
increases rapidly. Moreover, large-scale distributed
systems have been paid much attention recently with
applications to intelligent transportation systems,
semiconductor manufacturing systems, and intelli-
gent building and power plants. A decentralized
control approach for the large-scale distributed
systems was motivated in 1970s to design a set of
local controllers to reduce the burden of both
computation of a controller and communication of
information among subsystems (e.g., see in [2,3] and
references therein).

More specifically, while the decentralized adaptive
control was developed for the linear system subject to
nonlinear interactions among sub-systems [4-6], the
decentralized adaptive output feedback design was
proposed in the literature for a system of which all
states are not measured [7,8]. Although significant
progress in the area of decentralized control has been
made for last three decades, in recent the
decentralized approaches for a class of nonlinear

Manuscript received August 24, 2006; revised November
14, 2006; accepted November 30, 2006. Recommended by
Editorial Board member Hyungbo Shim under the direction of
Editor Jac Weon Choi. This work was supported by grant No.
R01-2006-000-11373-0 from the Basic Research Program of
the Korea Science & Engineering Foundation.

Bongsob Song is with the Department of Mechanical
Engineering, Ajou University, San 5, Wonchon-dong,
Yeongtong-gu, Suwon 443-749, Korea (e-mail: bsong@ajou.
ac.kr).

systems were proposed in 1990s. For instance,
decentralized adaptive control techniques for the
interconnected nonlinear subsystems have been found
in the literature [9,10]. However, most of the work is
based on an integrator backstepping technique whose
complexity due to an ‘explosion of terms’ may result
in difficulties for control synthesis [11].

Among many Lyapunov-based nonlinear control
techniques in the literature, a nonlinear control
method called Dynamic Surface Control (DSC) [11]
was developed to reduce the complexity of integrator
backstepping control [12] and mathematical
difficulties for analysis of the sliding mode control
due to discontinuous functions [13]. The systematic
analysis and design method was developed by Song et
al. [1] in the framework of convex optimization.
Furthermore, for the case that all states of the system
are not measured, a separation principle for the
observer-based DSC was proposed in the form of
diagonal norm-bound Linear Differential Inclusions
(LDIs) of the augmented error dynamics [14].

The main contribution of this paper is to extend a
centralized DSC design methodology to Decentralized
Dynamic Surface Control (DDSC) design for a class
of interconnected nonlinear systems within the
framework of convex optimization. While the idea of
DDSC was originally proposed in [15], more detailed
mathematical derivations of DDSC are described and
its stability and performance are discussed in terms of
L, gains as well as reachable sets of the error
dynamics. The remainder of the paper is divided as
follows; While the problem statement is given in
Section 2, Section 3 will present a preliminary design
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procedure of DDSC for N subsystems and the
augmented closed-loop error dynamics are derived in
forms of diagonal norm-bound LDIs [16]. Then, a
Linear Matrix Inequality (LMI)-based design
methodology to estimate the stability and performance
of the DDSC systems will be proposed in Section 3.
Finally, an illustrative example will be presented in
Section 4.

2. PROBLEM STATEMENT

The interconnected system composed of N strict-
feedback single-input nonlinear subsystems is
considered as follows; for i=1,2,...,N,

N
%= U + By +1,(x)+ D gy(x)
j=Lj#i (12)
=UxX; + By +1:(x;) +h, (X ,X;,,...),
Yi=xp =Cx;, (10)

where x; =[x

130X,

I” eR” and X; € R are the

state of the ith and jth nonlinear subsystem
respectively, and u;,y, eR

in;

are the inputs and

outputs of the subsystem respectively. Moreover, the
nonlinear function vector g, represents the

N

interconnection among subsystems, h; =Z/’ 1 jei
. = & 4

g;(x;)e R”™, and the matrices are following

o 1 ¢ . 0
oo 1 -0
Uy={: + . 1 e R,
0 0 - 0 1
00 0 0 0]

B, =[0 - 0 1] eR",
C,=[10 - 0]eRM",

where the matrix U; is a square matrix whose first
super-diagonal elements are one and elsewhere zero,
ie, U;=diag([l,...,1,1)eR"™ It is noted that
diag(x,i) [ordiag(x,—i)] denotes a square matrix of
size (n-+i) with the vector x forming the ith super-
diagonal [or sub-diagonal] of the matrix, and
diag(x,0) = diag(x) stands for a diagonal matrix
with the vector x forming the diagonal.

Furthermore, (1a) can be rewritten component-wise
as follows: for 1<k <,

Xik = Xicge1y T Sk (ipoe e X))

+ 0 Xy X 15X 15 XN )

)

where X, 1y =% and hy is the kth function of
h;. The ‘strict-feedback’ is said in the sense that the
nonlinearities f;;, the k-th element of the nonlinear
function vector f;, depend only upon x;,...,x; [12].

The additional assumptions for the system are as
follows:

A-it Each nonlinear function fik:]Rk —R, is a
C” function, Lipschitz, and f;;(0,...,0) =0.

A-ii: The interconnected nonlinear  function
g ‘R - R™ is unknown but bounded such
that
hin, <c, (3)

where ¢ is a known positive constant.
A-iii: x; isknownif j=i in the ith subsystem, but
notif j#i.

The constraint for unknown interconnected functions
shown in the 4-ii is necessary to prove the quadratic
stability of the decentralized robust control approach
proposed later. The additional constraint for the
unknown interconnected function is generally
considered for the decentralized robust control
approach (e.g., see in [6]), while the system
parameters for a linear combination of the known
interconnected functions are assumed to be unknown
in the decentralized adaptive control approach (e.g.,
see in [8,9]). However, if the constraint in the 4-ii is
too strict to apply for a class of systems, it can be
relaxed in the local domain with guaranteed local
stability. Furthermore, it is noted that a class of large-
scale nonlinear systems can be transformed to (1a) via
a global diffeomorphism [12].

3. STABILIZATION OF DDSC

The analysis and design methodology of DDSC is
proposed in this section. After the preliminary design
procedure is described, the augmented error dynamics
of the N closed-loop nonlinear systems are derived,
thus enabling us to provide a systematic method for
analyzing the closed loop system. In consequence,
algorithms for approximating reachable sets of error
trajectory in the form of an ellipsoid and for
calculating an L, gain will be developed in the

framework of LMI.

3.1. Design procedure of DDSC
Suppose the objective is x); > x5, =0 for the

stabilization problem. First, define the ith error
surface as Sy =xy —xy 4 for 1<k<m —1. After

differentiating the error surface and using (2), we get
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Sik = Xik = %ik,d = Xikaty T Jie T g — Xik -
If xjx41) is considered as the synthetic input to force

S;; to converge within an arbitrarily small bound,
then the wultimate boundedness is
Xik+1) = Xi(k+1) as follows:

achieved if

Xi(k+1) = ~Jie = e + %ika — Mg Sik»

where Ly >0 is the controller gain chosen later to

guarantee the quadratic stability and boundedness
[1,11]. However, since it is assumed that A; is
unknown, the synthetic input is

Xitk+1) = ~Ji + %ik,a — Mg S - @

It will be shown in Section 3.3 that the synthetic input
defined in (4) makes the closed-loop subsystem
quadratically stable.

Next, in order to force x; +1) ™ Xigk+1), define

Sigk+1) = Xih+1) = Xihs1),g  Where X,y 4 equals
Xi(k+1) Passed through a first order low-pass filter, i.e.,

Titk+)) XiCk-+1),d T Xi(k41),d = Xi(k+1) (5)

where  x;(;,1) 4(0) = ¥j(441y(0). After continuing this
procedure up to k=mn,—1, define Sing = Xi, ~

X4~ Finally, the desired control input is chosen as
U == fin, ¥ Xing.d ~ Min Sy » (6)

where x;, s is calculated as xmi,d=(f,~ni—xini,d)

/t,, using (5).

iny
Once the proposed controllers are implemented in

| ¥
% i-th i-th
~— k| Nonlinear Dyanmic Surface
I# Subsystem Controller
%

®  i-th closed-loop system

.
.
[ 2 v
. n-th n-th
];{;»{7 by F Nonlinear Dyanmic Surfac;{
Subsystem Controller
b« [

n-th closed-loop system

Fig. 1. Schematic diagram of interconnected systems
with DDSC.

the system, the overall layout of the closed-loop
system can be described as shown in Fig. 1. It is noted
that the complexity of the proposed controller is
reduced dramatically compared with integrator
backstepping control (see (6)), while the dimension of
the closed-loop subsystem with a local controller
becomes higher due to the inclusion of the low-pass
filter dynamics (see (5)), i.e., the dimension becomes
2n; —1.

3.2. Augmented error dynamics

Similar with the DSC design methodology
developed by Song et al. {1], a set of augmented error
dynamics can be derived for the closed-loop
interconnected systems. First, after subtracting and

adding x; )y and ¥ in(2),(2)is written as

Xik = [Xigkary =~ Xickr),a 1+ [Xigkan),a — Ticean)]

X ik+1) + Sk + B

O

Then, using ¥, in (4), the definitions of S;, and
the filter error defined as &1y ™= X;(k41),g — Xick+1)

(7) is rewritten as follows,
Xik = Sigraty T 8igra1) + Xik,a — Mg Site + g+

After iterating up to k =m;, it is rewritten as

for 1<k<m -1,

Sik = Sice+1) + Sigeat) — MieSie + Py (8a)
for k=n,,
St ="hiSi + hy. (8b)

Next, since the low-pass filters are added for DDSC,
the filter error dynamics should also be included.
Differentiating the filter error, §; & R and using
(4), the filter error dynamics are

for 1<k<m -1,

. d B
itk = E(xi(kﬂ),d —Xi(k+1))
1 ©

==&ty + [y Fitd + Mk Sine
Titk+1)

Since 3;,4=0 for the stabilization problem, (9) can

be rewritten as follows;
for k=1,

. . 1 .
~Aix Sig + égi(k+1) = _""_gi(kﬂ) i (102)

Tik+1)
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for 2<k<m -1,
1

éi(kﬂ) +fl'k'(10b)
Titk+1)

] . 1 .
_)‘ikSik_*'éZi(kH)—aéz,’k:_
Finally, combining (10) with (8), we have the
augmented error dynamics in the form of block
matrices as follows:

L, 0 {S,}_ Ay L {Si
Tg, T |l 0 A éll an
0 I,
J{I”il P J{ Ol}hi’

where
S; =[S0 Sip, I R,
£ T8y, I RPN,
pi::[fl,...,fni;l]TeR”i‘l,

and the submatrices are the following:
Ay =diag([l,....1),1) - diag(hy, ..., ki, )
=U, - diag(kil,...,kmi ),
Ai2 = —diag(l/’c,-z,. . "l/Tini ),
TSi = {dzag(?»ll yee ")\'i(ni_l))oni_l:\ € R(Vli—l) n; s
Tg, =1, +1,T;

IR

=diag —L,...,— L ,—1]
T2 Ti(n-1)

Since the matrix on the left hand side of (11) is in-
vertible with an inverse given by (refer to [1]):

L, o 1! L, 0
T, T ) TgilTSi Ta_} ,

the augmented closed loop error dynamics of N

nonlinear subsystems with DDSC can be reformulat-
ed as

zi=Az; +B,p, +B,h,, (12a)

y; =[C0lz; = Cg;, (12b)

where z;:=[ST¢] T eR*!, 3 =x, =S, for the
stabilization problem, and the corresponding matrices
are

A, I
A=l e AL T A |
& 5 & ( S i2)

I,

ng lTSi

0
B, :{Tgl} and B; =

Remark 1: While the error dynamics of centralized
DSC for the stabilization problem are derived in the
form of z=Az+B,p (refer to [1]), the closed-loop

error dynamics in (12a) are extended with an
additional term, h;. Furthermore, following termi-
nologies used in [16, § 4], it can be regarded as a
diagonal norm-bound Linear Differential Inclusion
(LDI), if there exists a matrix C., such that |p; <

‘ Czizi i .

Regarding the assumption (A-i) that f; is
sufficiently smooth and motivating to use linear
mapping theory [17], one approach to find the linear
mapping is to obtain a linear upper bound of p;
through linear approximation. That is, there exists a

constant row matrix L, suchthatfor i=1,...,n-1

Ip; I L;x; |
SV SitoeeosSin 81250+ G s Mt o5 Mgy -1y

Ti2se e Tig—1)) |
< Ci(A 1)z |
where v, is used to denote a function at the i-th step
of the induction. The last inequality above comes
from linear approximation of the function v,. For
more detail, the reader is referred to {1,11].
Remark 2: The overall augmented error dynamics

of N nonlinear subsystems with DDSC are written as
follows:

Z'l IA1 0 Zl
ZN 0 Ay | Zy
Bpl 0 P17
+ :
0 BpN _pNA
B, 0 Th |
+ :
0 B,y | hy

1f the centralized DSC proposed in [1] is used, the
calculation of a positive definite matrix Pe RMM
where M := Zfil n; for showing the existence of a

quadratic Lyapunov function candidate is necessary to
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guarantee the quadratic stabilization. This will be a
heavier burden for appropriate assignment of
controller gains and filter time constants compared
with the decentralized approach (i.e., the dimension of

P for DDSC is #;). This is a main motivation to
develop DDSC.

3.3. Reachable setsand L, gain

While the quadratic stability for the DSC was
proposed to guarantee the stability of DSC systems
and tested numerically in [1], reachable sets for
DDSC systems will be estimated to predict the upper
bound of errors of DDSC systems which result from
the unknown interconnected functions in (1a). First,
we need to define the reachable set as follows:

Definition 1 (also see in [16]): Suppose A; =
{hirseoohyy ) and 1 ={15,...,7;, } are given. A set,
R,, described in (13) below is called reachable sets

of the augmented error dynamics given by (12a)

R,, ={z;(D)|z;,p;.h; satisfy (12a),2,(0)=0,T > 0}.

(13)
Definition 2 (also see in [16]): Suppose that there

exists a quadratic function V(z;) = z,-T Pz; with P>0,
and dV(z;)/dt<0 for all z;,p;,h; satisfying (12a),
hih; <1 and V(z;)>1. Then, the ellipsoid E = {z;
eR" |zl Pz; <1} contains the reachable set R,

Following the assumption A-ii in (3), the
augmented error dynamics shown in (12a) can be
rewritten as

z;=A;Z; +B,p; + B, (14)

where u; is a unit-peak function such as ulu, <1,
ie, w;:=h/\Je, and B, :=+cB,. Once the
diagonal norm-bound condition |p;|<|C,z;| are
obtained and the assumption A-ii is satisfied, the
closed-loop error dynamics in {14) can be regarded as
a set of diagonal norm-bound LDIs (refer to [16, § 4]).

Then, the ellipsoidal bound of the reachable sets is
obtained as follows;

Theorem 1: Suppose h; is bounded with a known
constant ¢ in (3) and the matrices A;, B, and B,
in (14) are given. The ellipsoid, E ={z, eR"

lzl-TPzi <1}, contains the reachable sets of the

augmented error dynamics in (14) if there exist a set
of controller gains A; = {A;,...,A;, } and filter time

constants 7; :={T;p,...,T;, } satisfying

i. there exists C,;(A;,1;) suchthat |p; [<|C,;-z;},

ii. thereexist P, X, and a such that
P>0, >0 and diagonal, >0

ATP+PA;+aP+CLZC, PB, PR,

15
BL.P = 0 50.()

Blp 0 —of

7

It is noted that the proof of the theorem is derived
from the quadratic tracking idea of the diagonal norm-
bound linear differential inclusion in [1], and the
interested readers can refer to [16, § 6] for a detailed
proof. Also it is remarked that inequality (15) is not an
LMIin P, X, and o. However, itisan LMl in P

and ¥ for fixed o.

Remark 3: While it is assumed that the inter-
connection function h; satisfies a unit-peak condi-
tion, other assumptions can be used instead. For in-

T
stance, if h;is a unit-energy such that '[) h,-T h,dt <1,

the matrix inequality condition like the second
condition in Theorem 1 can be derived [16].
Furthermore, to obtain the smallest outer
approximation of the reachable set, we need to
minimize a maximum diameter of the ellipsoid. That

is, to minimize the objective function A, (P [1].
Definition 3 (also see in [16]): When the L, gain
of the augmented error dynamics in (12a) is defined as

|y Il
g1l 20 11 g |12

where the L, norm of x is||x||§= fxTxdt, and

supremum is taken over all nonzero trajectories of the
augmented error dynamics, starting from z,;(0)=0,
the augmented error dynamics are said to be
nonexpansive if its L, gain is less than one.

Suppose there exists a quadratic function V((;)
=(TP;,, P~0, and y=20 such that forall 1,

d T T
V@), ~y*h/h; <0

for all z; and h; satisfying (12a). Then the L,
gain of the augmented error dynamics is less than y
[16]. The above condition is equivalent to

G (A]P+PA; + & E)

T 2, T (16)

forall {; and m; satisfying
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T T .
i <(C 18 ) (Cl G ) J=1eumy,

Furthermore, the condition (16) is equivalent to

P>0, £>0 and diagonal,

T ~T ~ T
A; P+PA; +C;C;+CLEC,; PB, PBy,
BT.P -x 0 |=o0.
B).P 0 I
(17)
Theorem 2: Suppose the matrices A;, B, B,

and C; in (12) are determined for a given set of A,

and t;. The augmented error dynamics in (12) is
nonexpansive
i. there exists C_;(A;,1;) such that |p; |<|C, -z;|
and,
ii. if there exist |y|<1, P>0, and X =0 satisfying
the condition (17).
Therefore, we compute the smallest upper bound on
the L, gain of the augmented error dynamics provable
via quadratic functions by minimizing vy over the

variables P, X, and vy satisfying the condition (17).

4. ILLUSTRATIVE EXAMPLE

The stabilization problem of coupled inverted
double pendulums shown in Fig. 2 [5,6] is considered
to illustrate the proposed design technique. It can be
modeled as a fourth-order differential equation of
motion using Newton’s law as follows:

2

61= %sinel +u + kLZ(sinez cos0, —sinB; cos9,),
mll

. g . ka* .

62= 7SIH92 + 1ty +——(sin & cos 6, - sinf, cosh, ).
m2l

The model can be written in the form of (1) as
follows:

0

0 1 N 0 i
X = X u. +

7o o 1] [ Esingg, ——q—?sinxﬂ cos x;;
[ m;l

0

H ke sin x ;{ cos x
AL " "
ml? J o
J#i

2
=Ux;+Bufi+ D g (x;),
=L, i

mi
mza2
ulg'%
O

Fig. 2. Schematic of interconnected inverted pen-
dulums.

where x; =[0; 9,-]T and the assumptions A-ii are
satisfied as follows:

ke ) L ha® )
hl.Thi=£ a ]sinzxj] coszxﬂs[— a ] =¢.(18)

mil? 2 m,l*

Suppose that a=%=1

and b; = k025 for

milz

simulation, thus ¢=1/64.

4.1. Design of DDSC
Define the first error surface as S, :=x;;, and the
first low-pass filter as follows.

Sin=xin=%2=>x2="MiS1,
T Xing +Xinag = XivXi2,4(0) = x12(0).

Next, defining the second surface as S, 1= x;5 —x;5 4

and differentiating it, we get

2
. g . a . .
Si2 =u; + 7S11'1 X1 — 5 SN X COS X;1 — Xi2,d
m;l
ka® .
+——sinux;; cosxy,
m;l
g a’
U; = —TSiIl X+ ?sin X COsXx; + ).Ciz,d - kile-Z.
m

i

Then, using f;; =0 in the given example, we can

derive the simpler augmented closed loop error
dynamics than these presented in (12) as follows:

2= Az; + Byl (19a)
v =Czi» (19b)
where

T 3 R o
zZ; =[S,~1 Sin éi2] eR7, by =2sinxcosx ) =sin2x;,

and the submatrices are as follows:
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0

Dy 1 | L
A;=1 0 hp 0 |, By= onl? |

) ‘

M1 M Al Ol

) [1 0 o].

It is noted that the constant ¢ in (18) is reflected in
T )
Bhie SO hl hl =Sin 2le Sl.

4.2. Estimation of reachable sets

When the DDSC gain set, {A;;,A;5,T,2), is given,
a solution for the problem minimizing the largest
diameter of ellipsoids subject to (15) is obtained by
solving the following algorithm.
For a fixed >0,

max ¢
subjectto P tl, (20)

ATP+PA, +aP PBy,

, <0.
BI.P "

It is remarked that the above LMI is simpler than LMI
(15) because p; =0, thus the error dynamics in (19)
are used.

When a set of the DDSC gains are given as
i hin, o} = {14,002 and  {h;, M0, 750} =
{2,8,0.02}, the ellipsoidal bound is calculated using

both LMITOOL for a MATLAB-based graphical user
interface [18] and SeDuMi for semidefinite
programming [19]. When a is varied from 0.01 to
1.5, Fig. 3 shows the corresponding maximum
diameter of the ellipsoidal error bound which is

defined as 2./A,;, (P). Since the maximum diameter
increases as a does, the smallest ellipsoidal error
bound is obtained for a=0.01 as follows;

E={z;eR® |zl Pz, <13,

50

401

30_

20r

Maximum diameter

0 05 o 1 15

Fig. 3. Smallest ellipsoidal bound by minimizing the
largest diameter through the line search of a.

where
31.5121 —6.5853 11.6885
P=|-6.5853 6.6376 —12.2990|. (21)
11.6885 -12.2990 661.5193

43. L, gainof DDSC
When the DDSC gain set, {A;j,A;,T;2}, is given,
a solution for the problem minimizing the L, gain of

augmented error dynamics subject to (17) is obtained
by solving the following algorithm

min y
subject to P >0, 22)
ATP+PA, +E]C; PBy <0
Bg;iP —“/2]

For the given set of DDSC gain used above, the L,
gain of the augmented error dynamics is 0.0312.
Therefore, the given augmented error dynamics are
nonexpansive.

4.4. Time response of error
For the initial condition given by 6, =1.0, 8, =
—0.8, and g, =0, Fig. 4 shows time responses of o,

which converge to zero via DDSC. Furthermore, in
the presence of a parametric uncertainty, its results are

compared with those of the nonlinear control, w; =
—(1.25+2.92560, + 2.8251¢; )(2.92566; + 2.82519,),
proposed by Gong et al. [6]. When {A;,A;7,Ti0}i21 =
{1,4,0.02}, it is shown in Fig. 4 that performance of

both controllers is robust and quite similar in terms of
trajectories of ;. However, when {A;,X;5,Tip}i0 =

- - -0,(DDSC)
—— 6,(DDSC)
....... 8,(Gong et al)||

‘== 8,(Gong et al.)

Angle (rad)

=
L
-

B
o

2 3

Time (second)

Fig. 4. Time responses of &; in the presence of a
parametric uncertainty  5;(¢) = 0.25[1 +sin
(501)] for the given {¢(0),6,(0)}={1.0,
-0.8}.
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Fig. 5. Time responses of a quadratic function level,
zl»T Pz,

{2,8,0.02}, the stabilization response of 8, is faster

due to increase of the gain set of DDSC (see Fig. 4).
More precisely speaking, when the eigenvalues of

A4; for two different gain sets are calculated as

follows:

for {hi,hin, Tipbicy =1{1,4,0.02},

eig(A,) = {~1.0208,~48.9792,~4.0},
for A1, hisTin )0 = {2,8,0.02),
eig(A,) = {~2.0871,-47.9129,-8.0},

all eigenvalues are placed on the negative real axis in
s -plane. If the largest eigenvalues for two cases are
compared, the former case has a negative real
eigenvalue (i.e., ), (4;,)=-1.0208) which is closer
to joaxis in S -plane, thus causing the slower time
responses (compare & with 6, in Fig. 4). Finally,
it is shown in Fig. 5 that trajectories of z; are

contained in the ellipsoidal bound which is the
approximation of reachable sets. That is, the quadratic

function level z,-TPz,-, where P is obtained in (21),
becomes less than one after a certain period of time.

5. CONCLUSIONS

This paper developed the analysis and design
method of DDSC for a class of large-scale nonlinear
systems. By using the fact that the augmented error
dynamics for each nonlinear subsystem can be
expressed as a diagonal norm-bound LDI, it was
shown that the overall closed-loop system is presented
as N augmented error dynamics in forms of polytopic
diagonal norm-bound LDIs. Using the concepts of
reachable sets and L, gain, numerical algorithms to
estimate the reachable sets of the error dynamics and
to calculate the L, gain were proposed in the

framework of convex optimization. This approach

enables us to predict the performance as well as input-
output stability of the DDSC with respect to the given
controller gains and filter constants before conducting
simulation or experiments.
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