Physical Properties of Nisin-Incorporated Gelatin and Corn Zein Films and Antimicrobial Activity Against Listeria monocytogenes

  • Ku, Kyoung-Ju (Department of Food Science & Technology, Chungnam National University) ;
  • Song, Kyung-Bin (Department of Food Science & Technology, Chungnam National University)
  • Published : 2007.03.31

Abstract

Edible films of gelatin and com zein were prepared by incorporating nisin to the film-forming solutions. Com zein film with nisin of 12,000 IU/ml had an increase of 11.6 MPa in tensile strength compared with the control, whereas gelatin film had a slight increase with the increase of nisin concentration added. Water vapor permeability for both com zein and gelatin films decreased with the increase of nisin concentration, thus providing a better barrier against water. Antimicrobial activity against Listeria monocytogenes increased with the increase of nisin concentration, resulting in 1.4 log cycle reduction for com zein film and 0.6 log cycle reduction for gelatin film at 12,000 IU/ml. These results suggest that incorporation of nisin into com zein and gelatin films improve the physical properties of the films as well as antimicrobial activity against pathogenic bacteria during storage, resulting in extension of the shelf life of food products by providing with antimicrobial edible packaging films.

Keywords

References

  1. ASTM. 1993. Standard Test Methods for Tensile Properties Of Plastics. D638M, Annual Book of ASTM Standards, Philadelphia, PA, U.S.A
  2. ASTM. 1983. Standard Test Methods for Water Vapor Transmission of Materials. E 96-80, Annual Book of ASTM Standards, Philadelphia, PA, U.S.A
  3. Begin, A. and M. R. Van Calsteren. 1999. Antimicrobial films produced from chitosan. Int. J. Biol. Macromol. 26: 63-67 https://doi.org/10.1016/S0141-8130(99)00064-1
  4. Boziaris, I. S. and G. J. E. Nychas. 2006. Effect of nisin on growth boundaries of. Listeria monocytogenes scott A, at various temperatures, pH and water activities. Food Microbiol. 23: 779-784 https://doi.org/10.1016/j.fm.2006.03.003
  5. Coma, V., A. Martial-Gros, S. Garreau, A. Copinet, E. Salin, and A. Deschamps. 2002. Edible antimicrobial films based on chitosan matrix. J. Food Sci. 67: 1162-1168 https://doi.org/10.1111/j.1365-2621.2002.tb09470.x
  6. Hoffman, K. L., P. L. Dawson, J. C. Acton, I. Y. Han, and A. A. Ogale. 1997. Films formation effects on nisin in corn zein and polyethylene films. Research and Development Activities for Military Food and Packaging Systems Report 50: 238- 244
  7. Hulda, C. and G. Carlos. 2006. Edible films produced with gelatin and casein cross-linked with transglutaminase. Food Res. Int. 39: 458-466 https://doi.org/10.1016/j.foodres.2005.09.009
  8. Karen, S., F. Silvia, G. Lia, and J. Rosa. 2006. Study of the performance of nisin supported in edible films. Food Res. Int. 39: 749-754 https://doi.org/10.1016/j.foodres.2006.01.016
  9. Kim, H., E. Ko, S. Ha, K. B. Song, S. Park, D. Chung, K. Youn, and D. Bae. 2005. Physical, mechanical, and antimicrobial properties of edible film produced from defatted soybean meal fermented by Bacillus subtilis. J. Microbiol. Biotechnol. 15: 815-822
  10. Kim, H., I. Roh, K. Kim, I. Jang, S. Ha, K. B. Song, S. Park, W. Lee, K. Youn, and D. Bae. 2006. Antimicrobial edible film developed from defatted corn germ meal fermented by Bacillus subtilis. J. Microbiol. Biotechnol. 16: 597- 604
  11. Kim, Y., D. An, H. Park, J. Park, and D. S. Lee. 2002. Properties of nisin-incorporated polymer coatings as antimicrobial packaging materials. Packag. Technol. Sci. 15: 247-254 https://doi.org/10.1002/pts.594
  12. Ko, S., M. E. Janes, N. S. Hettiarachchy, and M. G. Johnson. 2001. Physical and chemical properties of edible films containing nisin and their action against Listeria monocytogenes. J. Food Sci. 66: 1006-1011 https://doi.org/10.1111/j.1365-2621.2001.tb08226.x
  13. Lee, C. H., D. S. An, H. J. Park, and D. S. Lee. 2003. Widespectrum antimicrobial packaging materials incorporating nisin and chitosan in the coating. Packag. Technol. Sci. 16: 99-106 https://doi.org/10.1002/pts.617
  14. Lee, M., S. Lee, and K. B. Song. 2005. Effect of gammairradiation on the physicochemical properties of soy protein isolate films. Radiat. Phys. Chem. 72: 35-40 https://doi.org/10.1016/j.radphyschem.2004.01.006
  15. Li, B., J. F. Kennedy, J. L. Peng, and B. J. Xie. 2006. Preparation and performance evaluation of glucomannanchitosan-nisin ternary antimicrobial blend film. Carbohydr. Polym. 65: 488-494 https://doi.org/10.1016/j.carbpol.2006.02.006
  16. Park, H. and S. Manjeet. 1995. Gas and water vapor barrier properties of edible films form protein from protein and cellulose materials. J. Food Eng. 25: 497-507 https://doi.org/10.1016/0260-8774(94)00029-9
  17. Park, S. K. and D. H. Bae. 2006. Antimicrobial properties of wheat gluten-chitosan composite film in intermediate-moisture food systems. Food Sci. Biotechnol. 15: 133-137
  18. Park, S. K. and D. H. Bae. 2006. Film forming properties of proteinaceous fibrous material produced from soybean fermented by Bacillus natto. J. Microbiol. Biotechnol. 16: 1053-1059
  19. Rhim, J. W., J. W. Park, S. T. Jung, and H. J. Park. 1997. Formation and properties of zein coated k-carrageenan films. Korean J. Food Sci. Technol. 29: 1184-1190