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Abstract

Many authors considered the computational aspect of sup-min convolution when applied to weighted average operations.
They used a computational algorithm based on «-cut representation of fuzzy sets, nonlinear programming implementa-
tion of the extension principle, and interval analysis. It is well known that Ty (the weakest {-norm)-based addition and
multiplication preserve the shape of L-R type fuzzy numbers. In this paper, we consider the computational aspect of the
extension principle by the use of Tj when the principle is applied to fuzzy weighted average operations. We give the
exact solution for the case where variables and coefficients are L-L fuzzy numbers without programming or the aid of

computer resources.
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1. Introduction

The extension principle introduced by Zadeh[15] is one
of the most basic ideas of fuzzy set theory. It provides a
general method for extending nonfuzzy mathematical con-
cept in order to deal with fuzzy quantities. The extension
principle is systematically applied to real algebra. An al-
gebraic operation encountered in risk and decision analysis
is the weighted average operation. In [1], Dong and Wang
considered the computational aspect of sup-min convolu-
tion when applied to weighted average operations. They
used a computational algorithm based on «a-cut representa-
tion of fuzzy sets, nonlinear programming implementation
of the extension principle, and interval analysis. Improved
methods devised for calculating fuzzy weighted averages
are proposed in [2, 9, 11, 13]. In general, the implemen-
tation of the solution procedure is not trivial since the so-
lution procedure corresponds to a nonlinear programming
problem which is very complex except for the simplest
mapping functions. The procedure is difficult to implement
even on a computer. To overcome this difficulties, in this
paper, we use Ty, the weakest ¢-norm, instead of ‘min’ for
fuzzy arithmetic operations based on sup-¢-norm convolu-
tion when applied to weighted average operations where
variables and coefficients are L-L type fuzzy numbers. It
is well known that 7y -based addition and multiplication
preserves the shape of L-R fuzzy numbers [6, 7, 10, 14]
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and hence simplifies fuzzy arithmetic operations of fuzzy
numbers. As applications of Ty -based fuzzy arithmetic
operations, Hong et al. [4, 5] considered fuzzy regression
analysis problem, Hong and Do [3] considered fuzzy sys-
tem reliability analysis problem and Hong [8] considered
correlation coefficients of fuzzy numbers. Using the shape
preserving and analytic formula of division, we give the
exact solution for the case where variables and coefficients
are L-I fuzzy numbers without programming or the aid of
computer resources.

2. Tyy-based algebraic operation of fuzzy
numbers

A fuzzy number is a convex subset of the real line R
with a normalized membership function.

A triangular fuzzy number a denoted by (a, &, [3) is de-
fined by

1—E§t—| ifa—a<t<a,
aty=+<1 ‘“—TB' if a<t<a-+p,
0 otherwise.

where a € R is the center and « > 0 is the left spread,
8 > 0 is the right spread of a.
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If &« = (3, then the triangular fuzzy number is called a
symmetric triangular fuzzy number and denoted by (a, o).

A fuzzy number é = (a, o, 8) g of type L-R is a func-
tion from the reals into the interval [0, 1] satisfying

for a <t <a+f,
. for a—a<t<a,

<o

else.

where L and R are non-increasing and continuous func-
tions from [0, 1] to [0, 1] satisfying L(0) = R(0) = 1 and
L(1)=R(1)=0.

A binary operation 7" on the unit interval is said to be a
triangular norm [12] (¢-norm for short) iff 7" is associative,
commutative, non-decreasing and T'(z,1) = « for each
z €0, 1]. Moreover, every t-norm satisfies the inequality

Tw(a,b) < T(a,b) < min{a,b) = Ty
where

a if b=1,
Tw(a,b)=<¢b ifa=1,
0 otherwise.

The critical importance of min(a, b), a-b, max(0,a+
b — 1) and Ty (a,b) is emphasized from a mathematical
point of view in [13] among others.

The usual arithmetical operation of reals can be ex-
tended to the arithmetical operations on fuzzy numbers by
means of Zadeh’s extension principle [15] based on a tri-
angular norm 7. Let A, B be fuzzy numbers of the real
line R. The fuzzy number arithmetic operations are sum-
marized as follows:

Fuzzy number addition &:

(A®B)(2) = sup T(A(z), B(y)).

THy=2

Fuzzy number multiplication ®:

(A® B)(2) = sup T(A(x), B(y))-

T y=z
Fuzzy number division ¢:

(A2 B)(2) = sup T(A(z), B(y)).

T —
y—Z

The addition (subtraction) rule for L- R fuzzy numbers
is well known in the case of Ths-based addition and then
the resulting sum is again on L-R fuzzy numbers, i.e., the
shape is preserved. It is also known that Ty -based addi-
tion and multiplication preserves the shape of L-R fuzzy
numbers [6, 7, 10, 14]. Of course, we know that T,-based
multiplication does not preserve the shape of L-R fuzzy
numbers. In this section, we consider Ty -based division
of L-R fuzzy numbers.
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Let T = TVZ be the weakest t-norm and, let A =
(a,24,B4)Lr, B = (b,an,BB)Lr be two L-R fuzzy
numbers. By [3,6, 7, 10, 14],

A®B=(a,04,84)Lr ® (b,ap,B8)LR

= (a + b, max(a 4, ap), max(84, 68)) LR, W
A®QB=
(ab, max(a b, apa), max(Bab, Bpa))Lr
for a,b > 0,
(ab, max{B4b, fpa), max(aab, apa))ry,
for a,b <0,
(ab, max(aab — Bpa), max(B4b — apa))rr
for a <0,b>0,L=R, 2
(0,4b, Bab) LR
for a =0,b> 0,
(0, =Bab, —aab)rL
for a =0,b <0,
(0,0,0)r
. for a =0,b=0.

It A and B are symmetric fuzzy numbers, i.e., L = R
and a4 = B4, ap = Op, the multiplication can be simpli-
fied as

A@ B = (ab, max(aA|b|,aB|a|,max(aA|b],aB|a|)LL 3)

For the case of division, we have by [8], for A =
(a)aAng)LR’ B = (ba aBa/BB)RLy

Casel:Fora,b >0

(A2 B)(z) =
L{{a/b— 2)/((1/b)max(aa, B52))]
if min {(a —aa)/b,a/(Bs+b)} <z <a/b,
R[(z - a/b)/((1/b)max(Ba, apz))]
if max {(a+Ba)/b,a/(b—aB)} >z > a/b,
0 otherwise.

CaseIl: Fora < 0,b<0

(Ao B)(z) =

R[(a/b~ z)/((1/b)max(8p, 242))]
if min {(a ~ Bg)/b,a/(aa +b)} <z <a/b,

L{(z = a/b)/((1/b)max(cp, Baz))]
if max {(a+ ag)/b,a/(b—[4)} > 2> a/b,
0 otherwise.
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Case Il : Fora = 0,6 > 0
(A2 B)(z) =
CaselV:Fora=0,b<0
(A2 B)(2) = (0.

(0,cea/b,Ba/b) LR

—Ba/b,—aa/b)RL-

Case V : Fora < 0,b > 0, we assume L = R additionally.
Then

(A2 B)(z) =
R(a/b—2)/((1/b)max(ca, apz))]
if min {(a —@a)/ba/(b+ ap)} <2 <a/b,
R{(z — a/b)/((1/b)max(8B4, Bp2))]
if max {(a+ B4)/b,a/(b—BB)} > 2> a/b,
0 otherwise.
Case VI: Fora > 0,b < 0, we assume L = R. Then
(Ao B)(z) =
R{(a/b—z)/((1/b)max(534, B52))]
if min {(a — B8g)/b,a/(b+ Ba)} < z < a/b,
R(z = a/b)/((1/b)max(as, ap2))]
if max {(a+aa)/b.a/(b—ag)} > 2> a/b,
0 otherwise.

Here, we note that A @ B is not exact L-R fuzzy num-
ber.

Example2.1Let A = (4,1,1)and B = (2,1,1). Then
max (1- (37 )1 - (%))
if 4/3< 2 <2,
(A2 B)(z) = dmax (1 (32) 1 (/g))
if 2<2z<4,
0 otherwise.
3—(4/2) if 4/3<2<2,
=q-1+(4/z) if 2<2z<4,
0 otherwise.

3. Analysis of weighted average

An extended operation commonly encountered in risk
and decision analysis is the weighted average operation. To
be specific, suppose the various alternatives to be assessed
are denoted by By, By, - - - , By and the criteria which en-
ter into the evaluation of each alternative have been identi-
fied to be a1, 9, - - - , vy Then for a given alternative B,

the relative merit of criterion ¢; is assessed by a rating, de-
noted by r;;. Furthermore, the relative importance of each
criterion is assessed by a weighting coefficient, w; for cri-
terion c;. Then alternative B; will receive the weighted
average rating

n
S W
_ j=1WiTij
e e e “
D e W

When w; and 7;; are represented by fuzzy numbers, the
weighted average 7; of Eq. (4) involves extended multipli-
cation, addition and division.

This section addresses the computational aspect of the
extension principle when applied to the weighted average
operation. The algebraic operations based on the weakest
t-norm Ty are used. The method provides an exact solu-
tion to extended weighted averages in a very efficient and
simple manner. The same examples as in [1] are given to
illustrate the method.

Consider the weighted average

Y=(Wi@X1)®e (W2 X))@ & (W, Xy,))
oWieW, @ - aW,)
where W, = (w;,6;,vi)r, Xs = (@i, 04, Bi) LR, T =
1,2, ,n.

) ?

We assume w;, z; > 0 and L = R and other cases can
be computed in a similar manner, but the expression can be
more complicated.

Since
Wi ® X; = (wizy, max(w;oy, 2:6;), max(wi 3, ¥v:)) LL
(i=1,2,-- ,n),
we have
Wi ®X) e (W@ X2) & & (W, ®Xy)

xi%‘))LL

E w;;; Max (wiay, z;0;), max (w; 5,
1<i<n 1<i<n

and

1<i<n 1<i<n

n
W, --aW, = (sz, max 0;, M8xX ¥;)LL
=1

Then, we have, by algebraic operations in Section 2,
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Y(2)
=(WiX1)a(We®@X2)® - (W, ® X,))
oW1 & W,)(2)

~—~

e |

1 i i, T05), ;
( /;w ) max( max (wios, z:d:), (max 7:)2)

n
if min (u‘; — max (w0, 2:0;)/ E w;,
1<i<n

=1

—)<z<w,
1/w+ 121%)(”%/2 WiL;
1=
- |
(1/ Z w;) max(lxgzagxn Vi, % 1%1%Xn(wiai’ x;0;))

=1

1<i<n

n
ifw < z < max ('LD — max %/Z w;,
1

i=
: )
n >
1/11_) + 121%Xn(wiai, 1'252)/2; W; L5
j=
0 otherwise (5)

n n
where w = E w;z;/ g w;.
iz-l =1 .
We now consider a two-term weighted average and a

three-term weighted average operation. We use the same
fuzzy numbers as in Dong and Wong [1].

Example 3.1 Consider the weighted average
Y= (W10 X1) o (W ® X)) @ (W1 & Wp)

where X; = (1,1,1), X5 = (3,1,1), Wy = (0.3,0.3,0.6)
and Wo = (0.7,03,0.3). Then W; & Wy =
(1,0.3,0.6) and (W1 ® X1)® (W2 ® X3) = (2.4,0.9,0.9),
and hence we have

$z—3%  if 15<z2<24,
=21 if 24<2z<24,
0 otherwise. (See Fig.2)

Example 3.2Adding a term to the average operation in-
troduces two more variables. The operation is now

Y = (W®X1)0(We0Xs)d(W3RX3))o(Wr @WadWs)

where X3 = (5,1,1) and W3 = (0.8,0.2,0.2). By (5),
we have
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Y(z)= (W1 ®X1)® (W2 ® X2) ® (W3 ® X3))
o (W e Wy & Ws)(2)
(6.4,1,1) @ (1.8,0.3,0.6)(z)
oy if §<z<3.56
-0.8+ 3 if 356<2<38,
0 otherwise. (See Fig.3)
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Figure 1. Fuzzy number A, B, Ao B.
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Figure 2. Two-term weighted average.
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Figure 3. Three-term weighted average.

4. Conclusion

In general, the sup-min convolution by means of exten-
sion principle of Zadeh has been used for fuzzy arithmetic
in risk and decision analysis. Many authors considered the
computational aspect of sup-min convolution when applied
to weighted average operations. But “min”-based multipli-
cation does not preserve the shape of fuzzy numbers, They
used a computational algorithm based on a-cut representa-
tion of fuzzy sets, nonlinear programming implementation
of the extension principle, and interval analysis. In this pa-
per, using the shape preserving property of Ty -based addi-
tion and multiplication and analytic formula of Ty -based
division, we give the exact solution of weighted averages
of fuzzy numbers for the case where variables and coeffi-
cients are L-L fuzzy numbers without programming or the
aid of computer resources. The same examples that Dong
and Wong [1] used are shown to illustrate the method.
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