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Abstract

First, we investigate fuzzy equivalence relations on a set X in the sense of Youssef and Dib. Second, we
discuss fuzzy congruences generated by a given fuzzy relation on a fuzzy groupoid. In particular, we obtain the
characterizations of p o o € FC(S) for any two fuzzy congruences p and o on a fuzzy groupoid (S, ®). Finally,
we study the lattice of fuzzy equivalence relations (congruences) on a fuzzy semigroup and give certain lattice

theoretic properties.
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1. Introduction

The concept of fuzzy sets was introduced by
Zadeh[11] in 1965. Since its inception, the theory of
fuzzy sets has developed in many directions and found
applications in a wide variety of fields. In particular,
many researchers [2,4,5,8,9] considered fuzzy relations
on a set as fuzzy sets in X x X and studied them.
However, in 1992, Youssef and Dib[3] established a
new approach to fuzzy relations. Crisp congruences
on structures, such as groupoids, semigroups, groups,
rings and lattices, are very well-known. In this paper,
we attempts a study of a new approach to fuzzy con-
gruences on fuzzy groupoids and fuzzy semigroups. In
Section 1, we list some definitions and some results
needed in the later sections. In Section 2, we define a
fuzzy equivalence relation on a set X generated by a
given fuzzy relation, give a description for it and form
a lattice of fuzzy eguivalence relations. In Section 3,
we define a fuzzy congruence on a fuzzy groupoid S
and obtain some results for it. In Section 4, we give
a description for the fuzzy congruence generated by a
given fuzzy relation on a fuzzy semigroup S. In Sec-
tion 5, we form the lattice of fuzzy equivalence rela-
tions (congruences) on a fuzzy semigroup S and prove
some properties of the lattice of fuzzy congruence on
a fuzzy semigroup S.
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2. Preliminaries

Throughout this paper, the following notation will
be used:

I : the complete and completely distributive lattice
[0,1] with the usual order of real numbers.

I A I: the vector lattice I x I with the partial order
defined as follows: ‘

(i) (r1,r2) < (s1,82) if and only if
r1 < 81,73 < 85 whenever 51 # 0 and s, # 0.
(ii) (0,0) = (s1, s2) whenever s; = 0 or 39 = 0.

F=r-{0},AD*=TATI-(0,0).

L : an arbitrary complete and completely distribu-
tive lattice with least and greatest elements denoted
respectively by 0 and 1.

L' : an arbitrary sublattice of L containing both 0
and 1.

A is called an L-fuzzy setinaset X if A: X > L
is a mopping. The notation {(z,A(z)) : z € X}
or simply {(z,r)}, where r = A(z), will be used to
denote a L-fuzzy set A in X. Similarly, an T A I-
fuzzy set in X X Y will be denoted by {(z,y),(r,s)}.
A fuzzy point of X with support z € X and value
r € I* may be denoted by [z,r] or z, and, analo-
gously, an I A I-fuzzy point of X x Y may be denoted
by [(z,y), (r,8)] or (,y)(r,s), Where (r,s) € (I A I)*.
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Throughout this paper, the notation (z,7) € A, where
A € I*, will mean that A(z) = r and the notation
((z,y), (r,s)) € B, where B € (I A I)**Y, will mean
that B(z,y) = (r, s).

We set now some fundamental concepts from [3]
which are of great importance in this work. The fuzzy
Cartesian product of two ordinary sets X and Y, sim-
bolically X' XY, is the collection of all I A I-fuzzy sets
in X xY. Hence XXY = (I A )**Y. The fuzzy
Cartesian product of a fuzzy set A = {(z,r)} in X and
a fuzzy set B = {(y,s)} in Y is the I A I-fuzzy set
AxB in X x Y defined as follows:

AxB = {((w,y),A(m),b(y)) rreX,ye€ Y}
= {((z,9),(r,s)}.

It is clear that AxB € XxY for each A € IX and
Bel".

Definition 2.1[3]. Let X and Y be nonempty sets.
A fuzzy function from X to Y is a function F from IX
to IY characterized by the ordered pair (F,{f:}zex),
where F': X — Y is a function and {f,}.cx is a fam-
ily of functions f, : I — I satisfying the conditions:
(i) f. is nondecreasing,
(i) .(0) and £,(1) = 1,
such that the image of any fuzzy set A in X under F
is the fuzzy set F(A) in Y defined as follows : For each
yey,

F(A)<y)={X*F*‘”f”(A(x)) i ?ﬁiéiiig

We write F = (F, f,) : X — Y to denote a fuzzy func-
tion from X to Y and we call the function f,,z € X,
the comembership function to F.

A fuzzy function F = (F, f,) is said to be uni-
form if the comembership furictions f, are identical
for all z € X. Two fuzzy functions F = (F, f,) and
G = (G, g,) from X to Y are said to be equal, denoted
by F=G,if F =G and f, = g, for each z € X (See
13).

The above definitions can be generalized in an ob-
vious way by replacing the unit closed interval I by an

arbitrary complete and completely distributive lattice
L.

3. The lattice of fuzzy equivalence
relations

Definition 3.1[3]. p is called a fuzzy relation from
a set X to a setY if p C XXY. In particular, p is

called a fuzzy relation in X if p C XxX.

It is clear that X' XY is itself a fuzzy relation from
X to Y. Any collection of AxB, where A € I* and
B e IY, is a fuzzy relation from X to Y.

The fuzzy cartesian product X xX is called the
universal fuzzy relation in X. The fuzzy relation
Px0 = 0 is called the empty fuzzy relation. Between
these two extreme cases, lies the identity fuzzy re-
lation, denoted by Ax, where Ay is the fuzzy re-
lation in X whose members are the [ x I-fuzzy sets
{((z,z),(r,7)) : z € X and r € I}.

Definition 3.2[3]. Let p1,po C X XY
(1) We say that p; is contained in ps if whenever
((z,y), (r1,7m2)) € A € p1, there exists B € ps
such that ((z,y), (r1,72)) € B.
In this case, we write p; C pa.
(2) We say that p; and po are equal if p; C p3 and
p2 C p1.
In this case, we write p; = ps.

To each IAI-fuzzy set C = {((=, ) (r,8))} in
X xY we associate a JAI-fuzzy set C~1 in ¥ x X

defined by C~' = {((y,2), (5,7))}-

Definition 3.3[3]. Let p be a fuzzy relation from X
to Y. Then the inverse of p, denoted p~!, is the fuzzy
relation from Y to X defined by p~! = {C~1: C € p}.

Definition 3.4[3]. Let p be a fuzzy relation from X
to Y and let o be a fuzzy relation from Y to Z. Then
the composition of p and o, denoted o o p, is the fuzzy
relation from X to Z whose constituting of I  I-fuzzy
sets C € XX Z are defined as follows:

((z,2),(r1,m3)) € C if and only if there exists
(y,r2) € Y x I such that ((z,y),(r1,72)) € A and
((y,2),(re,r3)) € B for some A€ pand B € 0.
Hence 0 o p = {C € XXZ : C is as defined above}.

It is clear that if p is a fuzzy relation on X, then
AxopCpand poAx Cp.

Result 3.A[3, Proposition in p.303]. Let
0,01, P2, P3,01, 02 be any fuzzy relations defined on the
appropriate sets. Then we have
(1) (p1op2) 0 ps = p1o(p20p3)-
2) p1r Cpeand oy Cog = pr ooy C paoos.
3) p1o(p2Ups) = (p1 ©p2) U (p1 o ps).
4) pro(p2Nps) C (Pl © p2) N {p1 © p3).
5)p1 C = py "cprt
)
)

1

6) (")t =p and (propp) Tt =ptop”

(
(
(
(
(
(T) (prUp2) ™ =p T Ups ™



&) (mNp2)t=p TNt

Definition 3.5[3]. Let p be a fuzzy relation on X.
Then p is said to be:
(1) reflexive in X if for each # € X and r € I, there
exists A € p such that ((z,2),(r,r)) € A, ie.,
Ax Cop.
(2) symmetric in X if whenever ((z,y), (r,8)) €
A € p, there exists B € p such that
((y7m)7 (s,7)) € B, Le, pﬁl =p.
(3) transitive in X if whenever ((z,y),(r,s)) € A
€ p and ((y, ), (s,t)) € B € p, there exists
Cep
such that ((z,2),(r,t)) € C,ie., pop Cp.
(4) a fuzzy equivalence relation on X if it is
reflexive, symmetric and transitive.

We will denote the set of all fuzzy equivalence re-
lations in X as FRelp(X). Tt is clear that XxX,
Ax € FRelg(X).

Result 3.B[3, Proposition in p.303). Let p and o
be fuzzy relations in a nonempty set X. Then:

(1) If p is reflexive [resp. symmetric and transitive],
then p~! is reflexive [resp. symmetric and
transitive).

(2) If p is reflexive [resp. symmetric and transitive],
then p o p is reflexive [resp. symmetric and
transitive)].

(3) If p is reflexive, then pop D p.

(4) If p is symmetric, then pU p~ ! pNp~! are
symmetric and po p~! = p~top.

(5) If p and o are reflexive [resp. symmetric and
transitive], then p Mo is reflexive [resp.

symmetric and transitive].

(6) If p and o are symmetric, then pU o is

symmetric.

From (1), (2) and (5), it is clear that if p,o €
FRelp(X), then p~!, pop, pno € FRelp(X).

Result 3.C[7, Proposition 2.2]. If p € FRelg(X),
then pop=p.

Result 3.D[7, Proposition 2.5]. Let p,o0 €
FRelg(X). Then poo € FRelg(X) if and only if
pooc=0oop.

Result 3.E[7, Proposition 2.7]. Let {p4}acr be
an indexed family of fuzzy equivalence relations on X.
Then (Y, po € FRelp(X).

Definition 3.6. Let p be a fuzzy relation on a set
X and let {p, : p C p, }aer be the indexed family
of all the fuzzy equivalence relation on X containing
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p. Then the fuzzy equivalence relation generated by p,
denoted by p®, is defined by

€ __
p= mpcpwaef Po-

From Result 3.E, it is clear that p® is the smallest
fuzzy equivalence relation on X containing p and for
any two fuzzy relations pon o on X, (pU0)°* =pVo,
where pV o denotes the least upper bound for {p,c}
with respect to the inclusion “ C 7.

Definition 3.7. Let p be a fuzzy relation on a set
X. Then the transitive closure of p, denoted by p*,
is defined as follows:

o0

P> = Uney p™, where p™ = popo---op (n factors).

The following is the immediate result of Definitions
3.5 and 3.7 and Result 3.A(3).

Proposition 3.8. Let p be a fuzzy relation on a set
X. Then p* is the smallest fuzzy transitive relation
on X containing p.

The following is the immediate result of Result
3.A(2) and Definition 3.7.

Proposition 3.9. Let p,o and 7 be fuzzy relations
on a set X. Then

()IfpCo,thenponCoon.
(2) If p C o, then p™ C o*.

Proposition 3.10. If p is fuzzy symmetric on a set
X, then so is p™.

Proof. For any n > 1, let ((z,y),(r,8)) €
A € p*.  Then there exist (z,t) € X x [
and A; € p (i = 1,2,- - -,n — 1) such that

((z,21), (r,t1)) € Ay, ((21,22),(t1,t2)) € Az, -+, and
((zn—1,9), (tn—1,2)) € An_1. Since p is fuzzy sym-
metric, there exist B; € p (# = 1,2,---n — 1)
such that ((y,2n-1),(8,tn=1)) € Bp_1,- -, and
((z1,%), (ty,r)) € By. Thus there exist B € p” such
that ((y,z),(s,r)) € B. So p" is fuzzy symmetric for
any n > 1. Hence p™ is fuzzy symmetric. O

The following is the immediate result of Proposi-
tion 3.10.

Corollary 3.10. Let p be a fuzzy relation on a set
X, I, for some k, p*+t = pk. Then p> = pUp*U-—-Up*.

Proposition 3.11. Let p and o be fuzzy equivalence
relations on a set X. If poo = gop, then (poo)™ = poo
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Proof. For any n > 1,

(poo)” (poo)o(poog)o---o(poo) (n factors)

= (popo---opjo(gooo---00)

(By Result 3.A(1) and the hypothesis)
= poo. (By Result 3.C and the hypothesis)

Thus (poo)* = poo for any n > 1. Hence

(po0)™ =poo.

Result 3.F[6]. If R is a relation on a set X.
Then B¢ = [RUR™1 U 1x]>.

The following is the fuzzy analogue for Result 3.F.

Theorem 3.12. If p is a fuzzy relation on a set X,
then
pf=[pUp Tt UAX]™®.

Proof. Let ¢ = {pUp~! U Ax]®. Then, by Propo-
sition 3.8, ¢ is fuzzy transitive and p C 0. Moreover,
Ax C pUp tUAx C o. Thus o is fuzzy reflex-
ive. On the other hand, it is clear that pUp~t U Ax
is fuzzy symmetric. Thus, by Proposition 3.10, o
is fuzzy symmetric. So ¢ € FRelg(X) and p C 0.
Now suppose 7 € FRelg(X) with p C 5. Then
clearly Ax C 5 and p=' C n7! = 75 by Result
3.A(5). Thus pUp ' UAx Cn. Sooc Cn. Hence
ot =0 =[pUptulLx]>™. 0

The following gives another description for p V o
of two fuzzy equivalence relations p and o.

Proposition 3.13. Let X be a set and let p,0 €
FRelp(X). Then (pUo)>® € FRelg(X). In fact,
(pUa)>® =pVo. ‘

Proof. From Proposition 3.8, it is clear that (pUo)™
is the smallest fuzzy transitive relation on X contain-
ing pUo. Since p and o are fuzzy symmetric, by Result
3.B(6), pUo is fuzzy transitive. Then, by Proposition
3.10, (p,0)™ is fuzzy symmetric. Since p and o are
fuzzy reflexive, Ax C p and Ax C o. Then, by Re-
sult 3.A(2), Ax C pUo. Thus Ax C (pUo)*. So
(pUe)™ is fuzzy reflexive. Hence (pUo)® € FRelp(X)
containing p U o. '

Now let 7 € FRelg(X) containing p and ¢. Then 5
is a fuzzy transitive relation on X containing p and o.
Since (pU o)™ is the smallest fuzzy transitive relation
on X containing p and o, (p U o)™ C 5. Therefore
(pUo)*® =pVo. -0

Theorem 3.14. Let X be aset. If p,o € FRelg(X),
Then pV o = (poo)™.
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Proof. Suppose p,0 € FRelg(X). Then, by The-
orem 3.12, (pU o) = [(pUc) U (pUo) P UAx]™®.
Since p and o are fuzzy symmetric, by Result 3.B(6),
(pUc)U(pUo) TUAx = pUo. Since p C pUo
and ¢ C pUo, by (2) and (3) of Result 3.A,
poo C (pUa)o(pUo) = pUo. Thus, by Corollary
3.A(2), (pUo)® C (pUo)>®. On the other hand,
since p,0 € FRelg(X)), p C poo and 0 C poo.
Then pUo C poo. Thus, by Proposition 3.9(2),
(pUe)® C(poa)®. So (poo)™ =(pUc)™. Hence,
by Proposition 3.13, pV o = (pU o). |

Theorem 3.15. Let X be a set and let p,0 €
FRelp(X). If poo € FRelg(X), then poo =pVa.

Proof. Let ((z,y),(r,s)) € A € p. Since ¢ is re-
flexive, Ax C o. Then there exists B € o such that
((y,y), (s,s)) € 0. Thus there exists C € p oo such
that ((z,y), (r,s)) € poo. So p C poo. By the similar
arguments, ¢ C po o. Hence po ¢ is an upper bound
for {p, o} with respect to “C”.

Now let n € FRelg(X) such that p C 7 and o C 7.
Then, by Results 3.A(2) and 3.C, poo Cnon C 1.
Thus p o o is the least upper bound for {p,o} with
respect to “ C 7. Therefore poo =pVo. ]

The following is the immediate result Theorem
3.15 and Result 3.D.

Corollary 3.15. Let X be a set and let p,0 €
FRelg(X) such that pog =g op. Then pVo =poo.

For a set X, it is clear that FRelg(X) is a par-
tially ordered 'set with respect to the inclusion “ C 7.
Moreover, for any p,o € FRelg(X), pNo is the great-
est lower bound for {p,o} in (FRelg(X), ). Now, we
define two binary operation V and A on FRelg(X) as
follows : For any p,o € FRelg(X),

pAo=pnoand pVo=(pUo)*.

Then we obtain the following result.

Theorem 3.16. Let X be a set. Then
(FRelg(X),V,A) is a complete lattice with the least
element Ax and the greatest element X xX.

4. Fuzzy congruence on a fuzzy
groupoid

Definition 4.1[3]. Let X,Y and Z be arbitrary (or-
dinary) sets. A fuzzy function from X x ¥ to Z is a
function F from the fuzzy Cartesian product XXV =
(IADX*Y of X and Y to the set IZ of fuzzy sets in Z,



characterized by the ordered pair (F, { fzy }(z.y)ex xY),
where F' : X XY — Zis afunction and {fazy } (o y)c x xv
is a family of functions f,, : JAI — I satisfying the
conditions:

(i) fay is nondecreasing on IAT,

(ii) fey(0,0) =0 and f,,(1,1) = 1.
such that the image of any IAI-fuzzy set Cin X XY
under F is the fuzzy set F(C) in Z defined as follows:
For each z € Z,

Vieer1(z) fay(C(2,1))
F(C)(z) = if £ (2 ) #0,
0 if FYz)=0.

We write F = (F, f,,) : X xY = Z to denote a
fuzzy function from X x Y to Z and we call the func-
tions fuy, (x,y) € X x Y, the comembership functions
to F.

From the conditions of f,, and the definition of
the partial order on IAI, it is clear that f,,(r,0) =
fay(0,7) =0 for each r € I.

It should be noticed that [ in this definition can
be replaced by an arbitrary complete and completely
distributive lattice L.

By using the above definition, in [3], they defined
the concept of a fuzzy binary operation, analogous to
the ordinary case, as follows.

Definition 4.2[3]. A fuzzy binary operation on a set
X is a fuzzy function ® = (-, gy )from X x X to X. A
nonempty set X together with a binary operation ®
on X is said to be a fuzzy groupoid and is denoted by
(X,0).

In the definition of ® = (-, -4, ), when I is replaced
by an arbitrary complete and completely distributive
lattice L, then @ is called an L-fuzzy binary operation
on X. If ® is an L-fuzzy binary operation on X, then
(X,®) is is called an L-fuzzy groupoid and is denoted
by (X, L,®).

A fuzzy binary operation ® = (-, 4y) on X is said
to be uniform if the comembership functions -, are
identical for all z,y € X. A fuzzy groupoid (X, ®) is
said to be wuniform if ® is uniform.

Example 4.2. Let S = {a,b,c}. We define
the function - : § x S —> S and the functions
wy ¢ IAI — T (x,y) € S x S, respectively as fol-
lows: For each (r,s) € A
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‘aa(7,8) = ‘ap(r, 8) = -ac(r; 8)
[ i(r+s) if r#0ands#0,
10 if r=0o0rs=0,

ba(r, 8) = b (71, 8) = “pc(7, 5)
_ [ logy(r+s) if r#O0ands#0,
10 if r=00rs=20,

ca(ras) - cb( )'_ CC(T7 S)
_{ %(274—23)—1 if r#0ands#0,
0

if r=0o0rs=0.

Then we can easily see that @ = (¢, -4y) : Sx§ = S
is a fuzzy binary operation on S. Hence (S,®) is a
fuzzy gropoid. Moreover, let us the comembership
functions -5y, : TAI = I,(z,y) € § x S, be defined
as follows: For each (x,y) € S x S and (r,s) € I x1,

_f Yr+s) if r#0ands#0,
my(T)S)_ 0 if r=0o0rs=0,
or

[ logy(r+s) if r#0ands#0,
ay(78) = 0 if r=00rs=0,

or
Lor +95) -1
i ={ ¢

Then clearly (S,

if r#0ands#0,
if r=0o0rs=0.

©®) is a uniform fuzzy groupoid. [

Remark 4.2. (a) If ® = (-,4y) is a fuzzy binary
operation on a set X, then F defines an (ordinary) bi-
nary operation on X and for each (z,y) € X x X, fq,
defines an (ordinary) binary operation on 1.

(b) If I = {0,1}, then the concept of fuzzy binary
operation reduced to the concept of (ordinary) binary
operation.

Let ® = (-, 2y) be a fuzzy binary operation on X.
For any fuzzy sets A and B in X, AxB is a IAI-fuzzy
set in X x X. Thus, by Definition 4.1,

V(z,y)EF“l(z) a:y( (iL'), ())

(A0B)(z) = i1 (2) £ 0, (4.1)
| 0 if -~ (2) #0,
for each z € X, where (4 ® B) denote ®(AxB).
Since any IAl-fuzzy point [(z,y)(r,s)] in X x X

can be written as [z, 7]x[y, 5]
Ol(@,y), (r,9)] = o([z,r]x[y, 5])
= [(.T, y): 'my(ﬁ S)]

If we write -(z,y) = @ -y and 4y (r,8) = 7 qy s
(analogous to the notation used in ordinary algebra),
the above equation takes the following form:

[z,7) @y, 8] =[x -y,7 2y 8] (4.2)

11



International Journal of Fuzzy Logic and Intelligent Systems, vol. 7, no. 1, March 2007

Let [X] = {[z,r] : € X,r € I*} be the set of all
fuzzy point in a set X. Then, by (4.2), ® induces an
ordinary operation on [X], denoted again ®. There-
fore to each fuzzy groupoid (X, ®) there is associated
an ordinary groupoid ([X], ®).

A fuzzy groupoid (X, ®) is said to be commutative
[resp. associative or cancellative] if ©® is commuta-
tive [resp. associative or cancellative] on the fuzzy
sets in X. A fuzzy set F in X is called an identity
of (X,®) or an G-identityif AOE = A=E®A
for each A € IX. A fuzzy set A in X is said to be
®-invertible if there exists a fuzzy set A’ in X such
that A A' = E = A’ ® A. In this case, A’ is called
an @-inverse of A. A fuzzy set A in X is called an
©-idempotent if A® A = A. Tt is clear that if an ©-
identity exists, then it is unique and that if (X, ®) is
associative and identity admitting, then an ®-inverse,
if exists, is unique.

Result 4.A[3, Theorem 4]. Let (X,®) be a fuzzy
groupoid, with @ = (-, -z, ), such that (r-4,, s) = 0 only
if r = 0 or s = 0. Then, the identity of (X, ®), if it ex-
ists, is a fuzzy point [e, e] € [X], where e is the identity
of (X,)and - =r =r-4.€ for each (z,¢) € X x1I.

Result 4.B[3, Theorem 5]. Let (X,®) be a fuzzy
groupoid with ® = (-, 4,), where - is associative and
Teys=0onlyifr =0o0rs=0. If [ee] € [X] is
the identity of (X, ®), then the invertible elements of
(X, ®) must necessarily be fuzzy points of X. More-
over, if [z,7] € [X] is ®-invertible, then the ®-inverse
of [z,7] is the fuzzy point [z7!,77!] € [X], where 7!
is the - -inverse of z and r -1 r P =g =r~1. 1, 1.

Let S be a groupoid. A relation R on the set S is
called left compatible if (a,b) € R implies (za,zb) € R
for all a,b,c € S, and is called right compatible if
(a,b) € R implies (az,bz) € R for all a,b,c € S. Tt is
called compatible if (a,b) € R and (¢,d) € R implies
(ac,bd) € R for all a,b,c,d € S. A left(right) com-
patible compatible equivalence relation on S is called
a left(right) congruence on S. As is well-known [6,
Proposition 5.1], a relation R on a groupoid S is a
congruence if and only if it is both a left and a right
congruence on S.

Definition 4.3. Let (S,©®) be a fuzzy groupoid with
© = (- zy), let A € SxS and let [z, ] € [S]. Then
we define [z, \]® A and A ® [z, A] as follows:
@) [z, A 0A={({(z-a,z-b),( XA 2aT A 9)):
(a,5). (r,5)) € A},
(i) Aoz, N ={({(a-z,b-2),(r az A, s pa X)) :
((a,b),(r,s)) € A}.
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We can see that either [z, \]© A, A©[z,\] € SXS
or (z,\) ® A, A® [z,)] ¢ SXS according to types of
a fuzzy groupoid (S, ®).

Example 4.3. (1) Let (S,®) be the fuzzy groupoid
given in Example 4.2 and let A be the I x I-fuzzy set
in S defined as follows:

A | a b c

a (A11,N11) (/\12,N12) ()\1371113)
b | (Aorsp21)  (Aa2,po2)  (A2s, pas)
¢ | (st p31)  (As2,pa2)  (Ass, pi33)

where (Aj, pij) € Ix1 (1 <4, <3). Then, for each

[a,] € [S],
[a,t] © A a
a (t-aa M1yt “qa p11)
b (t-ab A21, ¢ “aa H21)
(t ‘ac A31,% "aa ,U31)
0,40 A b
a (t aa A12,t -ap H12)
b (t-ab Aoz, b -ab p22)
C (t ‘ac A3‘27t ‘ab H'SQ)
[a,t]® A ¢
a (taa M3,t “ac P13)
b (t-ab A2, t -ac M23)
c (t-ac X33, % ac M33) -

Thus [a,t] ® A € SXS but A® [a,t] ¢ SXS.

(2) Let S = {a,b,c} and (5,0),0 = (5 ay),
be the fuzzy groupoid defined as follows: For each
(r,s) € IAI,

la b ¢
ala a a
blb b b
cle ¢ ¢,

T a8 =T abS=T"gc8
_f ir+s) i r#0 and s#0,
10 if

r=0 or s=0,

Y baS=T bp S=T'pc S
_ f logy(r+s) if r#0 and s#0,
“10 if =0 or s=0,

TreaS=T cbS—=T"'%S8
ler420)—1 i
0 if

r#£0 and s #0,
r=0 or s=0.

Let A be the IAI-fuzzy set in S defined as follows:



A | a b c

a | (M, 1) (Mg pan) (Mg, pas)
b | (Aot p21) (Moo, piza)  (Azs, pios)
¢ | (As1,p31)  (As2,p32)  (Ass, pas)

where (Aj;, pi;) € IAT (1 < 4,5 < 3). Then, for each
[a,1] € [5],

A0©|a,t] a
a (A1l “aa by f111 "aa B)
(A21 *ba b, 21 “aa t)
(A31 ‘ca by H31 ‘aa t)
A©|a,t] b
a ()\12 ‘aa t; H12 *ba t)
b (A22 *ba t, 22 “pa t)
¢ (A32 “ca t, 432 “pa t)
A©la,t] ¢
a (Al?; ‘aa t, H13 *ca t)
b (A23 *ba t, 123 “ca t)
c (A?)S ‘ca t; H33 *ca t)

Thus A ® [a,t] € SXS but [a,t] ® A ¢ §XS.

Now we shall introduce the notion of a fuzzy com-
patible relation on a fuzzy groupoid.

Definition 4.4. Let (S,®) be a fuzzy groupoid with
© = (+,-ay) and let p C SXS. Then p is said to be:
(1) fuzzy left compatible if for any [a, 7], [b, 5], [z, 1] €
[S], la,r]x[b, s] € p implies
([2,] © [a,r]) x([2,t] © [b, 5]) € p,
equivalently,
((a,b),(r,s)) € A € p and [z,¢] € [S] implies
that there exists B € p such that
((z-a,z-b),(t waT ta8)) €B.
(2) fuzzy right compatible if for any [a,7], [b, ], [z, 1]
€ [S], [a,7]x[b, 5] € p implies
(la,r] © [z, ) x([b, s] © [z, 1]) € p,
equivalently,
((a,b),(r,s)) € A € pand [z,t] € [S] implies
that there exists B € p such that
((a-2,b-2),(r 4z t,5 bz t)) € B.

(3) fuzzy compatible if for any [a, 7], [b, s], [z, 1], [y, p] €

[S], [a,r]x[b, s] € p and [z,t]x[y,p] € p implies
([aaT] ’ [;L‘,t])i(_([b, 8] ’ [yap]) € p,
and ([z,t]© [a, 7)) x([y, p] O [b, 5]) € p
equivalently,
((a,0),(r,s)) € A € p and ((z,y), (t,p)) €
B € p implies that there exists C' € p such
that

((a : l’,b : y)7 (T ‘ax b, 8 by p)) eC.

We can easily see that if A € p, [2,t]® A € p [resp,
A Q© [z,t] € p] for each [z,t] € [S], then p is fuzzy left
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[resp, right] compatible ©.

Example 4.4. (1) Let (S,0),0 = (-,4y), be the
fuzzy groupoid given in Example 4.2. and let p =
AU{[z,t] ® A; [z,t] € [S]} be a collection of TAI-
fuzzy sets in S, where A is the IAI-fuzzy set in S
given in Example 4.3(1). Then we can easily see that
p is a fuzzy left compatible relation on S.

(2) Let S = {a,b,c} and (S,®),® = (-, 2y), be the
fuzzy groupoid and let A be the I x I-fuzzy set in S
given in Example 4.3.(2). Let p = {A} U{A ® [z,¢] :
[z,t] € [S]} be a TAI-fuzzy sets in S. Then we can
easily see that p is a fuzzy right compatible relation
on S.

Lemma 4.5. Let p and ¢ be any fuzzy compatible re-
lations on a fuzzy groupoid (S, ®), where ® = (-, 4,).
Then p o o is also a fuzzy compatible relation on S.

Proof. Let ((a,b),(r,s)) € A € poo. Then there
exists (¢,p) € S x I,B € ¢ and C € p such that
((a,0), (r,p)) € B and ((¢,b),(p,5)) € C. Let [21] €
[S]. Since p and o are fuzzy compatible, there exist
B' € 0 and C' € p such that

((x-a,x-¢),(t war,t 5p)) €B
and

((x-c,x-b),(t wep,t-aps)) €.
Thus there exists D € poo such that ((x-a,z-b), (t2q
r,t-2p8)) € D. So poo is fuzzy left compatible. By the
similar arguments, we can easily see that po ¢ is fuzzy
right compatible. Hence p o ¢ is fuzzy compatible. O

Definition 4.6. Let (5,0),® = (-, 4y), be a fuzzy
groupoid and let p € FRelg(S). Then p is called a:
(1) fuzzy left congruence (in short, FLC) if it is
fuzzy left compatible.
(2) fuzzy right congruence (in short, FRC) if it is
fuzzy right compatible.
(3) fuzzy congruence (in short, FC) if it is fuzzy
compatible.

We will denote the set of all FCg [resp. FLCs and
FRCs] and a fuzzy groupoid (S,®) as FC(S) [resp.
FLC(S) and FRC(S)]. It is clear that Ax, S§XS§ €
FC(S).

Theorem 4.7. Let p be a fuzzy equivalence relation
on fuzzy groupoid (S,®), where ® = (-,-4y). Then
p € FC(S) if and only if p € LFC(S) N FRC(S).

Proof. (=): Suppose p € FC(S). Let (z,t) € S x I
and let ((a,b),(r,s)) € A € p. Since p is fuzzy re-
flexive, there B € p such that ((z,z),(¢t,t)) € B.
Then, by the hypothesis, there exists C € p such
that (z - a, - b),(t za 7t 2o 8) € C. Thus p is
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fuzzy left compatible. So p € FLC(S). By the sim-
ilar arguments, we can see that p € FRC(S). Hence
p € FLC(S) nFRC(S).

{«<): Suppose p € FLC(S) N FRC(S). Let
((a,),(r,s)) € B € p and ((c,d),(t,p)) € C € p.
Since p € FRC(S) and (c,t) € S x I, there exists
D € psuch that ((a-¢,b-¢),(rgct,s 4. t) € D. Since
p € FLC(S) and (b,s) € S x I, there exists £ € p
such that ((b-c,b-d),(s s t,5 va p)) € E. Since
p is fuzzy transitive, there exists F' € p such that
((@-¢,b-d),(r act,s-sap)) € F. Hence p € FC(S).
This completes the proof. O

Theorem 4.8. Let p and o be fuzzy congruences on
a fuzzy groupoid (S, ®), where ® = (-,-5,). Then the
following conditions are equivalent:

(1) poo € FC(9).

(2) poo € FRelg(S).

(3) p oo is fuzzy symmetric.

(4) poo=ocop.

Proof. It is clear that (1) = (2) = (3). We shall
show that (3) = (4) = (1).

(3) = (4): Suppose p o ¢ is fuzzy symmetric. Let
((a,b),(r,s)) € A € poo. Then there exist (c,t) €
Sx1I,B € g and C € p such that {(a,c),(r,t)) € B
and {(¢,b),(t,8)) € C. Since p and o are fuzzy sym-
metric, there exists C' € p and B’ € p such that
((b,0),(s,t)) € C" and ({c,a),(t,7)) € B'. Thus there
exists D € o o p such that ((b,a),(s,r)) € D. So
poo C oop. By the similar arguments, we can see
that cop C poo. Hence poo =oop.

{4) = (1): Suppose poo = oo p. Then, by Re-
sult 3.D, po o € FRelg(S). Since p and o are fuzzy
compatible, by Lemma 4.5, p o ¢ is fuzzy compatible.
Hence p oo € FC(S). This completes the proof. [

Remark 4.9. For a nonfuzzy case for Theorem 4.8,
See Rosenfeld[10] Proposition 2.

5. Fuzzy congruences on fuzzy
semigroups

Let p be fuzzy relation on a fuzzy semigroup (S, ®)
with ® = (-, 2y) and let {py : p C po}aer be the in-
dexed family of all fuzzy congruence on S coutaining
p. Let p be the fuzzy relation on 'S defined as follows:

p= naer oo P
Then we can easily see that p is the fuzzy congruence
on S containing p. In this case, p is called the fuzzy
congruence on S generated by p.

Let (S, ®) be a fuzzy semigroup, where ® = (-, zy)
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and 7 -,y s = 0 only if r = 0 or s = 0. We shall consis-
tently use notation Sl¢¢! with the following meaning:

glewe] S if S has the fuzzy identity [e, ],
SU{[e,e]} otherewise.

Definition 5.1. Let p be a fuzzy relation on a fuzzy
semigroup (S,®), where ©® = (-, y) and 7y, s = 0
only if r = 0 or s = 0. We define the fuzzy relation p*
on S as follows:

((e,d),(r",8') € A € p* if and only if there
exist [z,t],[y,p] € [S[*¢]] and B € p such that
((a,b),(r,s)) € B7C =T-a- y:d =z-b- y,'f" =
(t ‘za 7') (z-a)y P and s' = (t ‘za 7") (w-a)y D-

Proposition 5.2. Let p and o be fuzzy relations
on a fuzzy semigroup (S,®), where ® = (-,-zy) and
T2y §=0onlyif r =0or s =0. Then:

If p C o, then p* C o*.

(pUa)* =p*Uo”
p = p* if and only if p is both fuzzy left and
fuzzy right compatible.

Proof. The proofs of (1), (2) and (3) are obvious.

(4) From (1) and (3), it is clear that p* C (p*)*.
Now let ((c,d),(r",s")) € A € (p*)*. Then there
exist [2/,#'],[y,p'] € [S!°]] and B € p* such that
(a',b),(r',s) € Bjc=z'-a -y, d=2z"-b -y ,r" =
(t'2ra") (zraryy P 80d 8" = (#2140 8"} (2.4)y P'- Since
B € p*, there exist [z, ], [y, p] € [SI*¢]] and C € psuch
that ((a,b),(r,s)) € C,a'=z-a-y,t/ =z-b-y,r' =
(t2aT) (z-a)y P and 8" = (t -zb 5) (2.5)y P- Thus

c=gd y =2 (zay)y=(""z)aeyy),

d=3"-b -y =a"-(x-b-y)-y' =("2)-b-(y-y)

[.’E, . xytl ‘w'x t]v [yl ) y:pl vy p] € [S[e,e]]’

= (tl ‘' t) (2 -z)a r (' -za)(y'-y) (pl Yy p)7

' = (tl ‘a'w t) (zta)b T (2! -2-b)(y'-y) (pl vy p)7
So there exists D € p* such that ((c,d),(r",s")) € D.
Hence {(p*)* C p*.
Therefore (p*)* = p*.

(5) From (3), it is clear that p* C (pUo)* and
o* C (pUo). Then p* Uo* C (pU o). Now
let ((c,d),(r',s') € A € (pUo)*. Then there ex-
ist [2,#],[y,p] € [S*¢)] and B € p U o such that
(a,b),(r,s) € Byc=z-ay,d =2-by,r" = (t-cal) z-ayl
and 8" = (t 24 5) *(a.b)y P- Thus there exist C € p*Uo™*
such that ((c,d),(r',s')) € C. So (pUo)* C p*Uo*.
Hence (pUo)* = p* Uo™.

(6) (=): Suppose p = p*. Let ((a,b),(r,s)) € A €
p and let [f,t] € [S]. Then clearly [f,] € [SI®*=]]. Since
p=pha=f-a-eb=f-b-er=(ffa7) (fa)c
and-s = (t -y ) -(s.5)c €. Thus exist B € p such that

Yy
vy

H



((f-a,f-0),(t-for,t-s58)) € B. So pis fuzzy left
compatible. By the similar arguments, we can see that
p is fuzzy right compatible.

(«<): Suppose p is both fuzzy left and fuzzy right
compatible. Let ((¢,d),(r',s’) € A € p*. Then
there exist [z,t],[y,p] € [S*®]] and B € p such that
((a,b),{(r,s)) € Bjc =z -a-y,d = z-b-y,r =
(twa?) (c-ayy P and 8" = (t-23 5) -(c.4)y p- Thus, by the
hypothesis, A € p. So p* C p. Hence, by (1), p = p*.
This completes the proof. O

Lemma 5.3. Let p be a fuzzy relation on a fuzzy
semigroup (5,®), where @ = (,-,,). If p is both
fuzzy left and right compatible, then so is p™ for any
n € N.

Proof. Suppose p is both fuzzy left and right com-
patible and ((a,r),(r,s)) € A € p™. Then there exist
(#,8:5) € SxTand B; € p (i =1,2,--- ,n — 1) such
that ((a’? Zl)a (7‘, 31)) € Bla T ((valv b)) (snflu 5)) €
B, . Let [z,t] € [S]. Then, by the hypothesis, there
exist C; € pand D; € p (i =1,2,--- ,n— 1) such that
((.’E TQ, T zl)s (t ‘za T5 T ‘xz Sl)) € Cla T
((z - 2n—1,2 D), (t2z,_1st 2 8)) € Cn1,
(a-2,20 )P gz t,81 52 t) € Dy, o v,
((zn—1-2,b-2), (Sn-1 2, 12 t;8bat)) € Dp_y.
Thus there exist C € p" and D € p" such that
((®-a,z-b),(t war,taps) el
and
({(a-2,b-2),(r get,s 1)) €D.
Hence p™ is both fuzzy left and right compatible. [

Theorem 5.4. Let p be a fuzzy relation on a fuzzy
semigroup (S, ®), where ® = (-3, «y). Then p = (p*)°.

Proof. By Theorem 3.12, It is clear that (p*)¢ €
FRelg(S) such that p* C (p*)¢. Moreover, by Propo-
sition 5.2(1), p C (p*)°. Let ((a,b),(r,s)) € A € (p*)°.
Then there exist n € N and B € o™ such that
((a,b),(r,s)) € B, where 0 = p*U(p*) ' UAx. Thus,
by (2) and (5) of Proposition 5.2
o=pU(p ) UL = (pUpTtUAX)"
So, (4) and (6) of Proposition 5.2, o is both fuzzy
left and right compatible, Then, by Lemma 5.3, so
also is ¢”. Thus, for each [z,t] € [S], there exist
B,C € 0™ C (p*)° such that
((x-a,z-b),(t -zar,t-258)) €B
and ‘
((a-z2,b-2),(r ant,s b)) €C.
So (p*)¢ is a fuzzy congruence on S containing p.
Now let  be a fuzzy congruence on S containing p.
Then, by (1) and (6) of Proposition 5.2, p* C n* = n.
Since 7 is a fuzzy equivalence relation on S containing
p*,(p*) C m. So (p*)¢ is the smallest fuzzy congru-
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ence on S containing p. Hence p = (p*)°. |

We may rewrite Theorem 5.4 in more elementary
terms. If [¢,r'],[d, s'] € [S] such that

c:m-wy,d: S'b‘yﬂ'l = (t':car) (a-a)y P
and

s = (t ‘xb 5) (z-b)y p
for some [xz,t], [y,p] € [S*<]], where either ((a,b),
(r,s)) € A€ por ((ba)(s,r)) € B € p, then we
say that [c,7'] is connected to [d,s'] by an elementary
p-transition. Then we have the following alternative
version of Theorem 5.4.

Theorem 5.5. Let p be a fuzzy relation on a
fuzzy semigroup (S, @), where ® = (:,5,) and let
[a,7],[b,s] € [S]. Then ((a,b),(r,s)) € A € p if and
only if either [a,r] = [b, 5] or for some n € N there is
a sequence
[G,T] = [2’1,7"] - [7-72,7"1] >
= [2n_1,Tn—2] = [Zn,8] = [b, 5]
of elementary p-transitions connecting [a, 7] to [b, s].

6. The lattice of fuzzy congruences

Let (S,®) be a fuzzy semigroup, where © =
(-,-2zy). Then, from Theorem 3.16, it is clear that
(FRelg(S),A,V) is a complete lattice with Ag and
5%S as the least and the greatest element of FRelg(S5),
where A and V are operations on FRelg(S) defined as
follows : For any p,o € FRelg(S),

pAo=pnoand pVo=(pUo)°.
Similarly, if p, o € FC(S), then so pna, pU o € FC(S).
Hence, the two operations A and V on FC(S) are de-
fined as follows: For any p,o € FC(S)),

pAo=pNoand deszba.

Let p,o € FC(8). Then, by (5) and (6) of Propo-
sition 5.2, (pUo)* = p*Uo* = pUo. So, by Theorem
5.4, pL[JO' = {pU ). Hence, the operation V of p
and o in the lattice FC(S), A, V) coincides with the
operation V of p and o in the lattice (FRelg(S), A, V).

The following gives another description for the join
p Vo of two fuzzy congruences. This is the immediate

result of Proposition 3.14 and Definition 4.6.

Lemma 6.1. Let (S, ®) be a fuzzy semigroup, where
O = (,ay). If p,o € FC(S), then pV o = (poo)™.

The following is the immediate result of Corollary
3.15.

Lemma 6.2. Let (S, ®) be a fuzzy semigroup, where
© = (yay). If p,o € FC(S)) such that poo = 0o o p,
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then pVao =pooao.

Proposition 6.3. Let (S,®) be a fuzzy group with
® = (-, 'ay), where r -,y s =0 only if r =0 or s = 0.
Then poo = oo pfor all p,o € FC(S).

Proof. Let((z,y),(r,s)) € A € poo. Then there exist

(2,t) € S x I, B € 0 and C € p such that
((z,2),(r,t)) € B and ((2,y),(t,5)) €C .

Let [e,e] € [S] be the fuzzy identity of (S,®). Since

(S,®) is a fuzzy group, by Result 4.A and 4.B,
[z,r]@ (&7t r 'Oy, 8]) = [y, 5]

and

ly.s]o (fy s o[z, r]) = [z,7].
Then

((ZU,Z), ('r: t)) = ((yvz)v (S,t)) €B
and

((z,9), (t,9) = ((z,2), (t,1)) € C.
Thus there exists D € p o o such that ((y, ), (s,7)) €
D. By Result 3.A(6) and Definition 3.5

((x,y), (T7 3)) e D le (poa')_:l =cg! Op—l

= p Q0.
So poo C oop. By similar arguments, we can see
that o o p C p o 0. This completes the proof. O

Definition 6.4[1]. A lattice (L,A,V) is said to be
modular if for any z,y,2z € L with x < z,
(xVy)Az<zV(yAz).

Theorem 6.5. Let (S,®) be a fuzzy semigroup and
let H be any sublattice of (FC(S),A,V) such that
poo =ocopforall po € H Then H is a modular
lattice.

Proof. Let p,0,n € H such that p C . We will
show that (pVo)An C (6 An). Since pooc =0cop
for all p,o € H, by Lemma 6.2, it is suffices to show
that (poo)An C po (o An). Let ((z,9),(r,s) €
A€ (poo)An. Then ((z,y),(r,s)) € A€ poc and
((z,y),(r,s)) € A€n. Since poo = g o p, there exist
(2,t) € § x I,B € p and C € ¢ such that
(@,2), (r,1)) € B and ((2,), (t,5)) € C.

Since p C 1, there exists D € 1 such that
((z,9),(t,8)) € D. Thus there exists E € o A7 such
that ((z,9),(t,s)) € E. Since ((z,2),(r,t)) € B € p,
there exists F' € po(o An) such that ((z, 2),(r,s)) € F.
So(poa)An C po(o An). Hence H is a modular
lattice.

The following is the immediate result of proposi-
tion 6.3 and Theorem 6.5.

Corollary 6.5. Let (S,®) be a fuzzy group with
® = (,2y), wherer -, s =0 onlyif r =0 or s = 0.
Then (FC(S), A, V) is a modular lattice.
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