DOI QR코드

DOI QR Code

Retrieval of Aerosol Microphysical Parameter by Inversion Algorithm using Multi-wavelength Raman Lidar Data

역행렬 알고리즘을 이용한 다파장 라만 라이다 데이터의 고도별 에어로졸 Microphysical Parameter 도출

  • Noh, Young-Min (Advanced Environmental Monitoring Research Center, Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology) ;
  • Kim, Young-Joon (Advanced Environmental Monitoring Research Center, Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology) ;
  • Muller, Detlef (Leibniz-Institute for Tropospheric Research)
  • 노영민 (광주과학기술원 환경공학과, 환경 모니터링 신기술 연구센터) ;
  • 김영준 (광주과학기술원 환경공학과, 환경 모니터링 신기술 연구센터) ;
  • Published : 2007.02.28

Abstract

Vertical distribution and optical properties of atmospheric aerosols above the Korean peninsula are quite important to estimate effects of aerosol on atmospheric environment and regional radiative forcing. For the first time in Korea, vertical microphysical properties of atmospheric aerosol obtained by inversion algorithm were analyzed based on optical data of multi-wavelength Raman lidar system developed by the Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST). Data collected on 14 June 2004 at Gwangju ($35.10^{\circ}N,\;126.53^{\circ}E$) and 27 May 2005 at Anmyeon island ($36.32^{\circ}N,\;126.19^{\circ}E$) were used as raw optical data for inversion algorithm. Siberian forest fire smoke and local originated haze were observed above and within the height of PBL, respectively on 14 June 2004 according to NOAA/Hysplit backstrajectory analysis. The inversion of lidar optical data resulted in particle effective radii around $0.31{\sim}0.33{\mu}m$, single scattering albedo between $0.964{\sim}0.977$ at 532 nm in PBL and effective radii of $0.27{\mu}m$ and single scattering albedo between $0.923{\sim}0.924$ above PBL. In the case on 27 May 2005, biomass burning from east China was a main source of aerosol plume. The inversion results of the data on 27 May 2005 were found to be particle effective radii between $0.23{\sim}0.24{\mu}m$, single scattering albedo around $0.924{\sim}0.929$ at 532 nm. Additionally, the inversion values were well matched with those of Sun/sky radiometer in measurement period.

Keywords

References

  1. 노영민, 김영민, 김영준, 최병철(2006) GIST/ADEMRC 다파장 라만 라이다 시스템을 이용한 안면도 지역에서의 라이다 비 연구, 한국대기환경학회지, 22(1), 1-14
  2. Ansmann, A., U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis (1992) Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt., 31, 7113-7131 https://doi.org/10.1364/AO.31.007113
  3. Ansmann, A., F. Wagner, D. Muller, D. Althausen, A. Herber, W. von Hoyningen-Huene, and U. Wandinger (2002a) European pollution outbreaks during ACE 2: Optical particle properties inferred from multiwavelength lidar and star-Sun photometry, J. Geophys. Res., 107(D15), 4259, doi:10.1029/ 2001JD001109
  4. Ansmann, A. and D. Muller (2005) Lidar and atmospheric aerosol particles, in Lidar. Range-resolved Optical Remote Sensing of the Atmosphere, edited by C. Weitkamp, Springer, New York, 105-141
  5. Bockmann, C. (2001) Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions, Appl. Opt., 40, 1329-1342 https://doi.org/10.1364/AO.40.001329
  6. Cahoon, D.R. Jr., B.J. Stocks, J.S. Levine, W.R. Cofer III, and J.M. Pierson (1994) Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia, J. Geophys. Res., 99, 18627-18638 https://doi.org/10.1029/94JD01024
  7. Draxler, R.R and G.D. Hess (1998) An Overview of the Hysplit_4 Modeling System for Trajectories, Dispersion, and Deposition, Aust. Met. Mag., 47, 295-308
  8. Dubovik, O. and M.D. King (2000) A flexible inversion algorithm for retrieval of aerosol Optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105, 20673-20696 https://doi.org/10.1029/2000JD900282
  9. Eck, T.F., B.N. Holben, J.S. Reid, N.T. O'Neill, J.S. Schafer, O. Dubovik, A. Smirnov, M.A. Yamasoe, and P. Artaxo (2003) High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions, Geophys. Res. Lett., 30(20), 2035, doi: 10.1029/2003GL017861
  10. Eck, T.F., B.N. Holben, O. Dubovik, A. Smirnov, P. Goloub, H.B. Chen, B. Chatenet, L. Gomes, X.-Y. Zhang, S.-C. Tsay, Q. Ji, D. Giles, and I. Slutsker (2005) Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, J. Geophys. Res, 110, D06202, doi: 10.1029/2004JD005274
  11. Fernald, F.G., B.M. Herman, and J.A. Reagan (1972) Determination of Aerosol Height Distribution by Lidar, J. Appl. Meteorol., 11, 482-489 https://doi.org/10.1175/1520-0450(1972)011<0482:DOAHDB>2.0.CO;2
  12. Fernald, F.G. (1984) Analysis of atmospheric lidar observations: Some comments, Appl. Opt., 23, 652-653 https://doi.org/10.1364/AO.23.000652
  13. Hansen, J., M. Sato, and R Ruedy (1997) Radiative forcing and climate response, J. Geophys. Res., 102, 6831-6864 https://doi.org/10.1029/96JD03436
  14. Haywood, J.M. and V. Ramaswamy (1998) Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols, J. Geophys. Res., 103, 6043-6058 https://doi.org/10.1029/97JD03426
  15. Kim, J.E., Z. He, and Y.J. Kim (2006) Temporal Variation and Measurement Uncertainty of UV Aerosol Optical Depth Measured from April 2002 to July 2004 at GwangJu, Korea, Atmospheric Research, 81(2), 111-123 https://doi.org/10.1016/j.atmosres.2005.11.006
  16. Klett, J.D. (1981) Stable analytical inversion solution for processing lidar returns, Appl. Opt., 20(2), 211-220 https://doi.org/10.1364/AO.20.000211
  17. Lee, K., H. Lee, J.E. Kim, Y.J. Kim, J. Kim, and W.v. Hoyningen-Huene (2005) Impact of the Smoke Aerosol from Russian Forest Fires on the Atmospheric Environment over Korea during May 2003, Atmospheric Environment, 39(1), 85-99 https://doi.org/10.1016/j.atmosenv.2004.09.032
  18. Luo, Y., D. Lu, X. Zhou, and W. Li (2001) Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years, J. Geophys. Res., 106, 14501-14513 https://doi.org/10.1029/2001JD900030
  19. Muller, D., U. Wandinger, and A. Ansmann (1999a) Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Theory, Appl. Opt., 38, 2346-2357 https://doi.org/10.1364/AO.38.002346
  20. Muller, D., U. Wandinger, and A. Ansmann (1999b) Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Simulation, Appl. Opt., 38, 2358-2368 https://doi.org/10.1364/AO.38.002358
  21. Muller, D., I. Mattis, A. Ansrnann, B. Wehner, D. Althausen, and U. Wandinger (2004) Closure study on optical and microphysical properties of a mixed urban and Arctic haze air mass observed with Raman lidar and Sun photomter, J. Geophys. Res, 109, D13206 https://doi.org/10.1029/2003JD004200
  22. Muller, D., I. Mattis, U. Wandinger, A. Ansrnann, D. Althausen, and A. Stohl (2005) Raman lidar observations of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization, J. Geophys. Res, D17201
  23. Murayama, T., D. Muller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto (2004) Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo. Japan in spring 2003, Geophys. Res. Lett, 31, L23103 https://doi.org/10.1029/2004GL021105
  24. Ryu, S.Y., J.E. Kim, H. Zhuanshi, and Y.J. Kim (2004) Chemical Composition of Post-Harvest Biomass Burning Aerosols in Gwangju, Korea, AWMA, 1124-1137
  25. Shifin, K.S. and A.Y. Perelman (1964) Calculation of particle distribution by the data on spectral transparency, Pure Appl. Geophys., 58, 208-220 https://doi.org/10.1007/BF00879149
  26. Stull, R.B. (1986) An introduction to Boundary layer meteorology, Kluwer Academic Publishers, Netherlands, 1-25
  27. Tikhonov, A.N. and V.Y. Arsenin (1977) Solutions of III-posed Problems, John Wiley, New York, 258 pp
  28. Twomey, S. (1977) Introduction to the mathematics of inversion in remote sensing and indirect measurements, Elsevier, Amsterdam, 243 pp
  29. Veselovskii, I, A. Kolgotin, V. Griaznov, D. Muller, U. Wandinger, and D.N. Whiteman (2002) Inversion with regularization for the retrieval of tropospheric aerosol parameters from multi wavelength lidar sounding, Appl. Opt., 41, 3685-3699 https://doi.org/10.1364/AO.41.003685
  30. Wandinger, U., D. Muller, C. Bockrnann, D. Althausen, V. Matthias, J. Bosenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann (2002) Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements, J. Geophys. Res., 107(D21), 8125, doi:10.1029/ 2000JD000202
  31. Whiteman, D.N., S.H. Melfi, and R.A Ferrare (1992) Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere, Appl. Opt., 31, 3068 https://doi.org/10.1364/AO.31.003068

Cited by

  1. Three Dimensional Monitoring of the Asian Dust by the COMS/GOCI and CALIPSO Satellites Observation Data vol.29, pp.2, 2013, https://doi.org/10.5572/KOSAE.2013.29.2.199