Abstract
In this study, the performance characteristics of solid phase microextraction (SPME) were investigated for three major odorous groups that consist of 10 individual compounds ([1] volatile organic compounds (VOC): benzene, toluene, p-xylene and styrene, [2] reduced sulfur compounds (RSC): hydrogen sulfide, methyl mercaptan, dimethylsulfide (DMS), dimethyldisulfide (DMDS), and carbon disulfide, and [3] amine: trimethylamine (TMA)). For the purpose of a comparative analysis, two types of SPME fiber ([1] polidimethylsiloxane/divinilbenzene (P/D) and [2] $Carboxen^{TM}$/polidimethylsiloxane (C/P)) were test ε d against each other for a series of standards prepared at different concentration levels (100, 200, and 500 ppb). To compare the analytical performance of each fiber, all standards were analyzed for the acquisition of calibration data sets for each compound. The results of P/D fiber generally showed that its calibration slope increased as a function of molecular weight across different VOCs; however, those of C/P fiber showed a fairly reversed trend. Besides, we confirmed that the application of SPME is limited to many sulfur compounds; only two compounds (DMS and DMDS) are sensitive enough to draw calibration results out of SPME. The calibration data for RSC show generally enhanced slop values for C/P relative to P/D fiber. However, in the case of TMA, we were not able to find a notable difference in their performance.