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WEAK SOLUTIONS OF THE EQUATION OF MOTION OF
MEMBRANE WITH STRONG VISCOSITY

JIN-s00 HWANG AND SHIN-ICHI NAKAGIRI

ABSTRACT. We study the equation of a membrane with strong viscosity.
Based on the variational formulation corresponding to the suitable func-
tion space setting, we have proved the fundamental results on existence,
uniqueness and continuous dependence on data of weak solutions.

1. Introduction

A freely flexible stretched film is called a membrane. Let {2 be an open
bounded set of R™ with the smooth boundary T'. We set ) = (0,T) x £,
Y =(0,T) xT for T > 0. The nonlinear equation of the longitudinal motion
of a vibrating membrane surrounding €2 is described by the following Dirichlet
boundary value problem:

Py Vy P
(11) @ — le(W) = 0 m Q,
with
(1.2) y=0 on X%,
] .
(13) v0.2)=p(@), 0 =nl) i

where y is the height of the membrane. Then the reasonable physical candidate
for the potential energy is the surface area of h = y(z), = € (1, since energy is
stored in the membrane when it is stretched. Equation (1.1) is derived as the
Euler-Lagrange equation of the action integral

T 2
/O (/Q% %) dx—J(y))dt,

where J(y) is the surface area of the graph y. And it is well known that the
nonlinear term in (1.1) appears in the minimal surface problems as a nonlinear
elliptic operator. For the base of that we refer to Gilbarg and Trudinger {3].
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Recently, there are several authors related to this problem (1.1)-(1.3). Kikuchi
[8] has treated this problem in the space of functions having bounded variation
and constructed approximate solutions by Rothe’s method. But it seems to be
difficult to construct a solution in a Hilbert or reflexive Banach spaces not only
for theoretical construction but also for any other applications. So we consider
some modified but more realistic model given by the following problem with
viscosity terms:

%y . Vy dy .
8t2 le(W) —uA ot = f n Q,
(1.4) y=0 on X,

dy
ot
where ¢ > 0 and f is a forcing function. Damping mechanism appears extendly
and naturally in physical situations and there are many factors of it. We classify
it largely by air and structural factors. Among them the modified problem (1.4)
seems to be structually damped case. In the linear and semilinear cases, for
the research of damped systems, there are a lot of books and articles about
the well posedness and the practical applications (cf. [2], [10], [1], etc.) with
semigroup or unified variational treatments. However the quasilinear cases like
as this case require more manipulations in the analysis of systems. Because the
damped systems are very much model-dependent due to the strong nonlinearity.
In fact, the proposal of this problem can be found in [4] and [5] as a model
of quasilinear wave equations (see also Temam [10]). Especially, it is given
in Kobayashi, Pecher and Shibata [9] the proof of the existence of solutions
of (1.4). Using some regular data conditions, they used resolvent estimates
to construct regular solutions in a modified Banach space. However, it seems
that there are a little researches on the variational treatment of (1.4) and the
related control problems. Our aim of this paper is to prove the basic results
on existence and uniqueness of weak solutions of (1.4) in the framework of
variational method in Dautray and Lions [2]. The most difficult part of the
existence proof is to show the strong convergence of nonlinear terms, and the
part is completed by using the argument in [6] (see also [2, p.569] for the linear
case). Finally we note that the quadratic optimal control problems associated
with the equation (1.4) are studied in Hwang and Nakagiri [7].

y(07 .’L‘) = yo(d)), (0’ x) = y1(90) in Q,

2. Main results

We study the following Dirichlet boundary value problem for the equation
of motion of a membrane with strong viscosity
2

oy . Vy Oy _ .
52 dlv(W> _MAE =f in Q,

(2.1) y=0 on %
0 .
y(0.0) = p(@), 7 (0.0) =) in Q
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where f is a forcing function, yo and y; are initial data and u > 0 is a constant.
In (2.1) we suppose f € L2(0,T; H-1(Q)), yo € HL(Q) and y; € L*(Q2). The
solution space W(0,T') of (2.1) is defined by

{glg € L*(0,T; Hy(0)), ¢’ € L*(0,T; Hy (), ¢" € L*(0,7; H(2))}

endowed with the norm

-

2
lgliw o) = (”9”%2(0 T-Hl(n)) + ||9/H2L2 o,1;HL () T ||9”H2LZ(0 T~H*1(Q))) )

where ¢’ = dt %9 and ¢" = dt2 (cf. Dautray and Lions [2, p.471]). We remark
that W(0,7T) is contmuously imbedded in C([0,T]; H3(Q2)) N C1({0, T); L*())
(cf. [2, p.555]). The scalar products and norms on L%({)) and HZ(Q) are
denoted by (¢, %), |¢| and (¢, %) Hi(Q) |@ll, respectively. The scalar product
and norm on [L?(Q)]™ are also denoted by (¢,1)) and |#|. Then the scalar
product (,%) () and the norm [[¢f| of Hj(§2) are given by (V¢, V¢)) and
8 = |(V¢,V)|z, respectively. The duality pairing between HZ(€) and
H~1(Q) is denoted by (¢, ). Related to the nonlinear term in (2.1), we define

the function G : R — R"™ by G(z) = ——1—%,39 € R". Then it is easily
+ |z
verified that
(2.2) G(z) - G(y)| < 2{z —y|, Vaz,yeR"
The nonlinear operator G(V-) : H}(Q) — [L*(Q)]" is introduced by
Vé(z) 1
(2.3 G(Vo)(z) = ————=——=, ae. z€Q, Voec H;(Q).
e :
By the definition of G(V-) in (2.3), we have the following useful property on
G(V-):
(24) |G(V9)| <|V4|, |G(VY) —G(V)| < 2[Ve— VY|, Vé,9 € Hy().
Definition 2.1. A function y is said to be a weak solution of (2.1) if y €
W(0,T) and y satisfies

{ ©"(),8) + (G(Vy(), V) + u(Vy'(-), Vo) = (£(-), d)
(2.5) for all ¢ € H(Q)) in the sense of D'(0,T),
y(0) =yo € Hy(Q), '(0) =y € L*().

The following theorem gives the result on existence, uniqueness and regu-
larity of the weak solution of (2.1).

Theorem 2.2. Assume that u > 0, f € L?2(0,T; H Y(Q)) and yo € H}(Q),
y1 € L*(Q). Then the problem (2.1) has a unique weak solution y in W(0,T).
Furthermore, y has the following estimate

(26) WOP +FuoF + [ vy (5) s

< COllyoll® + 1wl + 11122 0,0 -200y)» V¢ € 10,71,
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where C is a constant depending only on p > 0.

Next we give the result on the continuous dependence of weak solutions of
(2.1) on initial values yg, y; and forcing terms f. Let P be a product space
defined by

(2.7) P = H}(Q) x LE(Q) x L*(0,T; H1(Q)).

For each p = (yo,v1,f) € P we have a unique weak solution y = y(p) €
W(0,T) of (2.1) by Theorem 2.2. Hence we can define the solution mapping
P = (%o, v1, f) — y(q) of P into W(0,T).

Theorem 2.3. The solution mapping p = (yo, y1, f) — y(q) of P into W(0,T)
is strongly continuous. Further, for each pr = (¥3,v},f1) € P and p; =
(¥2,v3, f2) € P we have the inequality

28) ¥ (p1;t) — ¥ (p2; )1* + | Vy(p1; ) — Vy(pz; )|
+/ VY (p1;s) — VY (p2; 8)|°ds
0

< Cllye — vl + Iyl — w3l + 1A - f2”%2(O,T;H—1(Q)))7 vt € [0, T].

3. Proof of main results
We will omit writing the integral variables in the definite integral with-
out any confusion. For example, in (2.6) we will write fot |Vy'|?ds instead of
fo VY (s)[?ds.

Proof of Theorem 2.2. We construct approximate solutions of (2.1) by the Gal-
erkin’s procedure. Since H}({2) is separable, there exists a complete orthonor-
mal system {w,,}°_; in L2(Q) such that {w.,}_; is free and total in HE ().
For each m = 1,2, ..., we define an approximate solution y, (t) of the equation

(2.1)
ym(t) = D gim()wj,
j=1

where ynm (t) satisfies

(Um (8), w;) + (G(Vym (1)), Vw;) + p(Vyp (1), Vuy)
(31) =<f(t) w]> tE[,T], 1SJ.<_ma
ym(0) = (yo, wi)ws, Y (0) = Z(yla Wi )w;
=1 =1
Let V,,, be m dimensional space spanned by {wy,...,w,}. Then we can see
that

m

(3.2) Yom = Z(ymwi)wi €V —yo in HYQ) as m — oo,
i=1
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(3.3) Yim = Z(ylvwi)wi EVm—y1 in LQ(Q) as m — oo.
i=1

Hence the equation (3.1) in Vj, induces the system of nonlinear second or-
der equations for g;m,(t) with initial conditions g;m(0) = (yo0,w;), ¢jm(0) =
(y1,w;)j = 1,...,m. Since the nonlinear term G(Vy,,(t)) in (3.1) is Lipschitz
continuous by (2.4), i.e., for fixed j € {1,...,m}

(G(Vypm (1) = G(Vym (1)), Vwoy)| < 2IVw; ||V (t) = Vi (1),
the system is also Lipschitz continuous in g;,,. Hence, it is verified that the
system admits a unique solution g;m(t),7 = 1,...,m over [0,T]. This allows
us to construct the approximate solution y.,,(t) of (3.1). Now we will derive a
priori estimates of y,, (£). At first, we multiply both sides of the equation (3.1)
by g}, (t) and sum over j to have
(34)  (Um(®),ym(®) + (G(Vym(1), Vym(®) + ulVym ()1* = (f(t), (1))
Secondly, we also multiply both sides of the equation (3.1) by g;m(t) and sum
over j to have
(35) W05 (0) + (G0 ). Y (8) + BTl (1), V(1)

= (F({t),ym(t).

We sum (3.4) and (3.5) to have

(3.6) (W (8), yi () + |V, () + 1(Vir (8), Vg (£))
= = Wm(t), ym(t)) + (f (1), Y (t) + ym(t))
‘(G(vym(t)% Vy;n(t) + vym(t))'

Since
" ’ . l_d_ / 2 ’ __/fi 2
WA nl®) = 2SO n(TU (0, Ven(0) = & 210 (0,
(3.6) can be rewritten as
li ! 2 1 2 ﬁ_d_ 2
(3.7 5 SO + WV () + 52 1V )

= = (U@ ym(t)) + (F(1), Y () + ym (1))
—(G(Vym(t)), Vi, (t) + Vym(t)).
By integrating (3.7) over [0, ], we obtain
(3.8) [yl (D2 + 20 / Ty 2 ds + |V ()
= Jyiml® + ulVyoml> = 200 (), ym(t) + 2(y1m> Yom)
/|2 / s
+ 2/0 Y| d8+2/0 (£ Ym + Ym)d

t
—2 / (G (V) Vi, + Vg )ds.
0
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Let € > 0 be an arbitrary real number. Then, we have by (2.4) and the Schwarz
inequality

t 1 t t
(3.9) ‘2/0 (G(Vym),Vy;n)ds’ < E/o |Vym|2ds+e/0 |Vl |2ds,
t i
(3.10) 2 [ (6(Tm), Tum)is| <2 [ 1Vum s,
0 0
t 1 t
1) 2 [ (ahadds| < UF ey +e [ 1VUnPds,
i t
612) [ [ (um)ds| <15y + [ Vo,

Also we have
1 K 2
313)  AWO U] < en®F + Joom+ [ vn(o)ds|
2 2T [*
< elnlOF + 2ol + 2 [ s

We note by (3.2), (3.3) that |y1m| < C'|y1], [Vyom] < C'||yol for some C' > 0
independent of m. Therefore from (3.8) to (3.13), we can obtain the following
inequality

t
(3.14) (1= Oy + 1 Vym(O)* + (26— 26)/0 Vyp|*ds
< Oclllyoll® + 1 + 1 F1Z2 0.7 -1. )

L+ 27, / (W l? + [Vym[2)ds,

5
+ G+ —

for some C, > 0. If we choose € = min{%, £}, then by Gronwall’s inequality it
follows that

(3.15) WO + [Tum (@) + / Wy, Pds
< Cllyoll® + 1) + 11z 0,1-202))

where C is some positive constant independent of m. Therefore y,, and yl,
remain in a bounded sets of L>(0,T;H3(Q)) and L>(0,T;L%(R2)) n L*(0,
T;H}(R)), respectively. And the nonlinear term G (V) is uniformly bounded.
Hence by the extraction theorem of Rellich’s, we can extract a subsequence
{Ymi} of {ym} and find 2z € L>=(0,T; H}(Q)), 2’ € L*(0,T; L2(R)) N L(0, T;
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H}(Q)) and also F(-) € L?(0,T; L*(Q)) such that

(3.16) i) Ym, — 2 weakly-star in L°(0,T; Hy(Q)),
and weakly in L2(0,T; H3 (Q)),
i)y, — 2 weakly-star in L*(0,T;L*(%)),
and weakly in L2(0,T; Hy(Q)),
i) pAy,, — pAzZ weakly in L2(0,T; H™'()),
iv) G(Vyn) — F(-) weakly in L%(0,T; L*()),
as k — co. By the standard argument of Dautray and Lions [2, pp. 564-566],

in view of (3.16), it can be verified that the limit z of {y.,, } belong to W(0,T)
and is a weak solution of the linear problem

2
%——divF( t) — ,uA-g—Z =f in @Q,
(3.17) z=0 onX,

z(0,z) = yo, ?-Z(O,:c) =1y in £

ot
Thus, to prove that z is a weak solution of (2.1), we need to show that F(-) =
G(Vz(-)). For the purpose we shall show Vy,,(t) — Vz(t) strongly in [L?(Q)]".
To this end we use the strong convergence arguments in [6]. For notational
simplicity, we denote Y, by ¥ again. The approximate solution y,,(t) satisfies
(3.8). For the weak solution z of (3.17), we can obtain the following equality
similarly as for y,,(t) as in [2, p.567].
¢
618 OF <2 [ VP + TP
0
= |yl® + ulVyol* ~ 2(2'(t), 2(t)) + 2(y1, 0)
¢ ¢ ¢
+2/ |2'|2ds + 2/ (f,z + z)ds — 2/ (F, V2 +Vz)ds.
0 0 0

Moreover the following equalities hold:

(Urm (1), ym (8)) + (2 (1), 2(1))
)

= (W) = 2O ym(t) — 2(8) + W (1), (1) + (' (1), ym (1))
(B + [ = g () = w(O) + 2dm (1), % (1));
[Vém ()] + V)] = [V(pm(t) ~ (1) + 2(Vm(t), VE(2));

( (), Vom(t)) + (F(t), Vi(t))
= (G(Vym(t)) — G(Vi(1)), V(dm(t) — ¥(1))) + (G(Vym(2)), VI (2))
(G(VY(1)), V(em(t) —9(1)) + (F (1), VE(t)),

+
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where ¢, (t) = ym(2) or y,,(¢) and ¥(¢) = 2(¢) or 2'(¢t). Adding (3.8) to (3.18)
and using the above equalities, we have

(319)  ym () = 2O + 20 /Ot [V (ym — 2")ds + ulV (ym (t) — 2(8))?
3
= &+ 22‘%(75) = 2y (t) = 2'(1), ym(t) — 2(t))

t
0

t
+ 2/ lyl, — 2'|2ds — 2/ (G(Vym) — G(Vz), Vym — Vz2)ds
0
¢

2 / (G(Vym) — G(V2), Vi, — V)ds,

where
0 = |yiml® + 11?4 £(Vyom|? + [Viol?)
+2((y1m, Yom) + (¥1,%0)),
BL(M) = —(Wn(t) 2 (1) — u(Vym(t), V2(t)) — 20 /0 (Y, V2')ds,
8t = 2 /0 (v )5 + / (f. 2+ )ds
+ / s + Y dS — (Ul (8), 2() — (2/(8), Ym (1)),
0
B (1) = — /0 (C(Vym), V(2 + 2/))ds — /O (F,V(z + ))ds

~ [, 9~ 2) + (5.~ s
For simplicity we set
Sm(t) = % + 2?3‘_4@:‘,1(0.
i=1
It is clear from (3.2) and (3.3) that

(3.20) O — 2l + 24 Vo) + 4(y1, vo)-

By (3.16) we have Vy,, () — Vz(t) weakly in [L2(Q)]"*, ¢, (t) — 2/(t) weakly in
L*(Q) and Vy,, — V2’ weakly in L?(0,T; [L*(Q)]"), and moreover G(Vy,,) —
F weakly in L2(0,T; [L?(Q)]"), so that

(321) 2, — —|Z'(t)|2—ﬂ|vz(t)|2—2HA |V2'|?ds,

£
0

(3.22) () — 2/0 |z’|2ds+2/(f,z+z’>ds—2(2'(t),z(t)),
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(3.23) ®3 (1) — —2/t(F,V(z+z’))ds.
0

Whence by (3.20)-(3.23) and by the equality (3.18) for z, we have

(3.24) S (t) — 0 as m — oo.
The right hand side of (3.19) is estimated as follows:
(3.25)  (r.hs. of (3.19))

< Sl + 5ln(t) ~ ZOF + dlgom — ol
+4/ IV (Ym |ds+(4T+2/1ym /2ds
4 / 9 — )|V (ym — 2)1ds

S |

+K/ |v %+ |yl — z/|2)ds

1 t
Sim(t) + 51y (t) = 2 () + 4yom — yol* + u/o V(Y — 2)|%ds

451

where K = (2+4T +4 + %) By (3.19) and (3.25) we can obtain the following

inequality

326) ()~ X + W m(®) ~ O + [ V0 -

t
< Sn(®) + Al ~ ol + K [ (19m - 2 + i — ) ds.
0
We divide (3.26) by o = min{2, u} > 0 and if we set C = LK and

(3.27) M (t) = [V (ym(t) = 20)° + lym(t) = 2/ (O,

(3.28) U (t) = = (Sm(t) + 4lyom — vol*),

1
@
then we can have

(3.29) Min(£) < Up(t) + C / Mo (s)ds.
0

Here we note, thanks to (3.2) and (3.24) that

{3.30) ¥, (t) >0 when m — oo, forall ¢te[0,T]

We apply Gronwall’s inequality to (3.29), then we have

T
(3.31) M () < O (t) + Cexp(CT)/ .. (s)ds.
0
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By the equality (3.18), we see that ¥, (¢) is uniformly bounded. Then it follows
from (3.30) and (3.31) that

(3.32) lim Mo, (t) = 0.

m— 00

Therefore we can verify that

(3.33) ym(t) — 2(t) strongly in H3(Q),

(3.34) Y (t) — Z'(t) strongly in L*(Q).

Finally, by (3.33) and Lipschitz property of G(Vz) in (2.4) we can deduce
(3.35) F(t)=G(Vz(t) i [L2()]" vte[0,T).

The energy inequality (2.6) follows from (3.15) and the strong convergence of
each terms in (3.15) by (3.33), (3.34) and (3.26). 0O

The uniqueness of weak solutions follows directly from the continuous de-
pendence (2.8) given in Theorem 2.3.

Proof of Theorem 2.3. Let y(p1) and y(p2) be the weak solutions of (2.1) cor-
responding to p; € P and py € P, respectively. Set ¢ = y(¢q1) — y(g2). Then ¢
satisfies

2

22— aiv(G(Vu(p) - G(Ty(pa))
Op :
(3.36) —pAg =fH-fr I Q
=0 on X,
4P(07 CE) = yé(w) - yg(w)a %_f(oa .’C) = y%(l‘) - y%(l‘) in Q

in the weak sense. Since

[G(Vy(p1)) — G(Vy(p2))| < 2|V,

we can repeat the same calculations as for (2.6) to have the estimates

t
Vo) + 10 (1) + /0 V' 2ds

< Clllvo —wl* + v = wilP + 151 = llizorm-r@)):

This proves the strong Lipshitz continuity of solution mapping p = (yo, 11, ) —
y(q) of P into W(0,T). O
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