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CONTACT THREE CR-SUBMANIFOLDS OF A
(4m + 3)-DIMENSIONAL UNIT SPHERE

HyanG Sook KM, YOUNG-MI KiM, JUNG-HWAN KwoON, AND JIN SUK PAk

ABSTRACT. We study an (n+ 3)(n > 7)-dimensional real submanifold of
a (4m+3)-unit sphere $¥™*3 with Sasakian 3-structure induced from the
canonical quaternionic Kahler structure of quaternionic (m + 1)-number
space @™, and especially determine contact three CR-submanifolds
with (p — 1) contact three CR-dimension under the equality conditions
given in (4.1), where p = 4m — n denotes the codimension of the sub-
manifold. Also we provide necessary conditions concerning sectional cur-
vature in order that a compact contact three C' R-submanifold of (p — 1)
contact three C R-dimension in $4™*13 is the model space 47113 (ry) x
S4n2+3(r9) for some portion (n1,n2) of (n — 3)/4 and some r1,ry with
r% + r% =1

1. Introduction

Let us consider a (4m + 3)-unit sphere $4™+3 a5 a real hypersurface of the
real 4(m + 1)-dimensional quaternionic number space Q™*1. For any point ¢
in §4m+3 we put

§=1q, n=Jgq, (=Kqy,
where {I, J, K} denotes the canonical quaternionic Kéhler structure of Q1.

Then {¢, n,{} becomes a Sasakian 3-structure, that is, £, 7 and ¢ are mutually
orthogonal unit Killing vector fields which satisfy

VyVx€=g(X,0)Y — g(Y,X)¢,
(1.1) VyVxn=g(X,nY — g(¥,X)n,
VyVx(=g(X,Q)Y — g(Y,X)¢

for any vector fields X,Y tangent to S*™*3 where g denotes the canonical
metric on $4™*+3 induced from that of Q™! and V the Riemannian connection

Received August 12, 2005.

2000 Mathematics Subject Classification. 53C40, 53C15.

Key words and phrases. contact three CR-submanifold, contact three CR-dimension,
Sasakian 3-structure.

This work was supported by the Korea Research Foundation Grant (R14-2002-003-01002-
0).

©2007 The Korean Mathematical Society
373



374 HYANG SOOK KIM, YOUNG-MI KIM, JUNG-HWAN KWON, AND JIN SUK PAK

with respect to g. In this case, putting
(1.2) X =Vx& ¢X =Vxn, 6X=Vx(
it follows that
¢ =0, Yyn =0, 6C =0,
(1.3) Yo =—-0n=¢ 06 =—¢(=mn, ¢n=—9P{ =,
7,¢] = -2, [(.&] = —2n, [§,n] =-2¢
and
P =-I+f®¢ Y =-I+f0n 0°=-I+f¢,
(1.4) Vi=0¢+fc®n 0p=v+f0( Wp=0+[&¢
Op=—0+f,0(¢ ¢=-¢+f @, vo=—-0+f®n,

where I denotes the identity transformation and

(1.5) fe(X)=9(X,8), fr(X)=9(X,n), [f(X)=g(X,()
(cf. [4, 5, 6, 10]). Moreover, from (1.1) and (1.2}, we have
(Vy )X = g(X, €)Y — g(¥, X)¢,
(1.6) (Vyy)X = g(X,n)Y — g(¥, X)n,
(V)X = g(X, Q)Y — g(¥, X)¢
for any vector fields X,Y tangent to S4™+3.
Let M be an (n+3)-dimensional submanifold tangent to the structure vectors

¢, 1 and ¢ of $4™*+3 and denote by TM and TM+ the tangent and normal
bundle of M, respectively. If there exists a subbundle v of TM~ such that

(1'7) PUy C Vg, Yy C Uz, Ovy Cuy,
(1.8) v C TuM, Yvi CcT.M, 6vy CT,M

for each point z € M, where v is the complementary orthogonal subbundle
to v in TM+, then the submanifold is called a contact three CR submanifold
of $4m*+3 and the dimension of v contact three CR-dimension (for details, see
[7]). A real hypersurface is a typical example of contact three C R-submanifold
with zero contact three CR- dimension.

In this paper we shall study (n+ 3)-dimensional contact three C'R-submani-
fold with (p — 1) contact three C'R-dimension of S4™*+3, where p = 4m — n is
the codimension of submanifold. In this case the {¢,,8}-invariant subspace

Dy =T, MN¢TMNYT,MNIT, M

of T, M has constant dimension n — 3 because the orthogonal complement 2;-
to 2, in Ty M has constant dimension 6 at every point z € M (for details, see

7).

In this paper we shall investigate some geometric characterizations of
S (ry) x 84 ¥ (ry)  (r} 475 =1, m+ng=(n—3)/4)
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as a contact three CR-submanifold of a (4m + 3)-dimensional unit sphere (see
Theorem 4.3, Theorem 5.3 and Theorem 6.3).

2. Preliminaries

Let M be an (n + 3)-dimensional contact three CR-submanifold of (p — 1)
contact three C'R-dimension in a (4m + 3)-dimensional Riemannian manifold
M with Sasakian 3-structure {¢, 7, ¢} which satisfies (1.1), where p = 4m — n.
Then, by definition, we may set v+ = Span {N} for a unit normal vector field

N to M. Here and in the sequel we use the same notations as shown in section
1. Put

(2.1) U=-—¢N, V=-¢N, W=-6N.

Then from (1.3), (1.4) and (1.8) we can see that U, V, W are mutually orthog-
onal unit tangent vector fields to M and satisfy

g(g’U):Q Q(E,V)'—‘Q g(f,W):O,
(2.2) gmU)=0, g(nV)=0, gnW)=0,

Moreover &, n, ¢, U, V and W are all contained in 2, and consequently
dim 2} > 6 at any point z € M. But, already mentioned in section 1,
dim 2; = 6 at any point x € M. Therefore, for any tangent vector field X
and for a local orthonormal basis {Na }a=1,.p (N1 := N) of normal vectors to
M, we have the following decomposition in tangential and normal components:

23) #X = FX+u!(X)N, X =GX +v'(X)N,
' 60X = HX + w'(X)N,
ONy = —UQ+P¢Na, YNy = -V, + PwNa,

2.
(24) ON, = Wy + PgNy, a=1,...,p.

It follows easily from (1.4) that {F, G, H} and {P,, Py, Py} are skew-symmetric
linear endomorphisms acting on T, M and T, M, respectively.
Since the structure vectors £, and ¢ are tangent to M, the equations (1.4),
(2.3) and (2.4) imply
F?X = - X + fe(X)€ + u(X)U;, u(FX)=0,
(2.5) G*X = =X + f,(X)n+ o' (X)W1, v(GX)=0,
H*X = - X + fe(X)¢+w' (X)W, w'(HX)=0,
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GFX = ~HX + fe(X)n + v} (X)W1, vY(FX) = -w'(X),
HFX =GX + fe(X){ + (X)W, w'(FX)=v'(X),
FGX = HX + fy(X)¢ + 1 (X)lh, u'(GX)=w'(X),

(26) HGX = —FX + f,(X)¢ +o1(X)W1, w(GX) = —u'(X),
FHX = —GX + f(X)¢ +w'(X)U1, u'(HX)=—v(X),
GHX = FX + fo(X)n+w' (X)W1, o'(HX) =4 X),
@) 9(Ua, X) =t (X)b10, 9(Vo, X) =0 (X)b16,

g(Wa7X):w1(X)6la7 a:]-,-'~ap7
which yields

9(U1, X) =u!(X), g(V1, X) = v!(X), g(W1,X) = w' (X),

(2.8)
Us=0, Va=0, Wa=0, a=2,...,p,

9(Ua, Up) = bap — g(PpNa, Py Np),
(29) g(VonVB) =6aﬁ_g(P¢'Na7P1/1Nﬁ)a

g(Wa, Wﬂ) = 0apB — g(PoNa,PgNg).
From (1.3) and (2.3), it follows that
F§¢=0, Gn=0, H{( =0,
FW:C, F<=‘7]a G§:_<, GC:& Hg:,’I’ HW:_&
u'(§) =0, w'(n) =0, u'(¢) =0, v'(§) =0, v'(n) =0,
v'(¢) =0, w'(¢) =0, w'(n) =0, w'(¢) =0.
Using (1.4) and (2.1)-(2.4), we have
FU, =0, GVy, =0, HW, =0, FV; =W, FW; = -V,
GU, = =Wy, GW, =U,, HU, =V, HV, = ~U;,

(2.10)

(2.11)

(2.12) PyN; =0, PyNy =0, P;N;, =0,

which together with (2.1), (2.4), (2.8) and (2.9) implies U = U,V =V, W =
Wi and
wU) =v(V) =w(W) =1,

@13) V) = wW) =0, o(U) = u(W) =0, w(l)=w(V)=0.

Here we notice that dimM = n 4+ 3 must be 4] + 2 for some integer ! since
dim 2} = 6 at any point z € M.
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3. Fundamental equations for contact three C R-submanifold

Let M be as in section 2. We denote by V and V+ the Levi-Civita connection
on M and the normal connection on TM+ induced from V, respectively. Then
the Gauss and Weingarten equations are of the form

(3.1) VxY =VxY +h(X,Y),
(3.2) VxNy=~AX +V%Ny, a=1,...,p

for any vector fields X, Y tangent to M. Here h denotes the second fundamental
form and A, is the shape operator in direction of N,. They are related by

P
h(X,Y) = g(AaX,Y)N,.
a=1
Furthermore we may put
P
(3.3) V4 Ne = 3 s0s(X)Na,

p=1

where (sqp) is the skew-symmetric matrix of connection forms of V+. More-
over, since S¥*3 i of constant sectional curvature 1, the equations of Gauss,
Codazzi and Ricci imply

(3.4)
g(R(X7 Y)Za W) = g(Ya Z)g(X> W) - g(X, Z)g(Y, W)

+ 3 {9(AaY, 2)g(AaX, W)} — 9(AaX, Z)g(AaY. W),

g((Vx ALY — (VyAL)X, Z)

(3.5) = S {9(45X, Z)spa(Y) — g(A5Y, D)s5a(X)},
B
(3‘6) g(Rl(va)NﬁvNa) :g({AﬁaAa]X7Y>

for any vector fields X,Y, Z tangent to M, where R denotes the Riemannian
curvature tensor of M and R+ the curvature tensor of the normal connection

VL (cf. [2]).

Differentiating (2.3) covariantly and using (1.1), (1.2), (2.8), (2.11), (3.1)
and (3.2), we have
(VyF)X = g(X,£)Y ~ g(X,Y)¢ — g(A1 X, Y)U + w} (X) ALY,

(3.7) X
(Vyuh)X = — g(A, FX,Y),

(VyG)X = g(X,n)Y — g(X,Y)n - g(AX,Y)V + 0! (X)AY,

(3.8) )
(Vy’U )X = — g(AlGX, Y),
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(VyH)X = g(X,Q)Y — g(X,Y)¢ — g(A1 X, Y)W + w' (X)ArY,
(Vywh)X = - g(A1HX,Y).

Differentiating (2.1) covariantly and using (1.1), (1.2), (2.8) and (3.1)-(3.3),
we have

(3.9)

(3.10) VxU =FA X,
g(AaU7X):—ZZﬁ)=281ﬁ(X)Pga? a=27""p7
11) VxV = GA X,
9 AV, X)=-3%_, slg(X)Pg’a, a=2...,p,

VXW = HA]X,
(3.12) ) ,
g(AOtVVaX):_ ,8:2515(X)Pﬁa7 a:2""7pa

where we have put

p 14 P
PyNo =Y PYNs, PyNa=)Y PYNs, PyNao=Y Pi;Ng.
B=2 B=2 B=2

On the other hand, since £, n and ¢ are tangent to M, it follows from (1.2)
that

Vx{=FX,
(3.13) 9(A1€,X) =ul(X), thatis, A;£=U,
Aa€=07 a:27""p7

VXU = GXa
(3.14) g(A1n, X) =v}(X), thatis, A=V,
Aan=0, a=2,...,p,

Vx(=HX,
(3.15) g(A1(, X)) = wl(X), thatis, A (=W,
A=0, a=2...,p

From now on, we assume that the distinguished normal vector field N is
parallel with respect to the normal connection V.. Then it follows from (3.3)
that

(3.16) s15=0, B=2...,p,
which together with (3.10)-(3.12) implies
(3.17) AU=0, AV =0, AW=0, a=2,...,p.
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Moreover, (3.3) reduces to
P
(3.18) VxNo =3 sag(X)Ng, a=2,....p.
B=2
for any vector field X tangent to M.
Finally we provide some lemmas for later use.

Lemma 3.1. Let M be an (n + 3)-dimensional contact three CR-submanifold
of (p— 1) contact three CR-dimension in a (4m + 3)-unit sphere S4™3, where
p = 4m — n denotes the codimension. Assume that the distinguished normal
vector field N is parallel with respect to the normal connection. Then the com-
mutativity conditions

AlF:FAl, AlG:GAl, AlH:HAl
hold on M if and only if

VA =0.

Moreover, in this case
A? =24 41T,
AU =64+ 00, AV =n+2V, AAW=(+IW,

where A = u'(A1U) = v} (A1 V) = wl(A; W), which is locally constant.

(3.19)

Proof. We first assume that VA; = 0. Differentiating the second equation of
(3.13) covariantly along M and using the first equations of (3.10) and (3.13) and
VA; =0, we can easily see that A;F = FA; holds on M. Similarly. from those
of (3.11), (3.12), (3.14) and (3.15), we can verify that A;G = GAy, A1H =
HA, also hold on M.

The proofs of the converse and (3.19) have been given in |7, Lemma 4.1, p.
570]. O

Lemma 3.2, Let M be as in Lemma 3.1. If the distinguished normal vector
field N is parallel with respect to the normal connection, then

(3.20) AJF+FA, =0, A,G+GA,=0, A, H+HA, =0,

(3.21) trdqe =0, a=2,...,p.

Proof. Differentiating the third equation of (3.13) covariantly and using the
first equation of (3.13), we have

(Vx AL+ A FX =0,
or equivalently
(3.22) 9(VxAa)Y,€) + 9(AFXY) =0

for any vector fields X, Y tangent to M. By means of (3.5), the third equation of
(3.13) and (3.22), we can be easily obtain the first equation of (3.20). Similarly,
from (3.14) and (3.15), we can get the other equations of (3.20).
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Applying FX to both side of the first equation of (3.20) and using (2.5),
(3.13)-(3.15) and (3.17), we have

A X =FAFX,
and consequently
9(AGX,GY)y = —g(A,HX,HY)

for any vector fields X,Y tangent to M. It is clear that those equations imply
(3.21). d

4. Codimension reduction for contact three C' R-submanifolds

In this section we let M be as in Lemma 3.1 and denote by A the shape
operator A, in direction of the distinguished normal vector field N. We first
prepare a lemma for later use.

Lemma 4.1. Let M be as in Lemma 8.1. If, for any vector fields X,Y tangent
to M, the equalities
(41 MFX,Y)=-h(X,FY), h(GX,Y)=-h(X,GY),

1) h(HX,Y)= ~h(X,HY)

hold on M, then
(4.2) AF =FA, AG=GA, AH=HA,
and Ay, =0 for a = 2,...,p. Moreover, in this case, the distinguished normal

vector field N is parallel with respect to the normal connection.

Proof. Sine n =41+ 3 and 4m — n = 4¢q + 1 for some integers [ > 1 and ¢ > 1,
and since the subspace v is {¢, 1, 6}-invariant (see also (2.12)), we can take a
local orthonormal basis {NV, Ng, Ng», Ng«s, Ngx=« }q=1,... ¢ of normal vectors to
M such that

Na* = ¢Na, Na** = thh Na*** = 9Na.

Then we can express the second fundamental form h as

q

WX, Y) = g(AX,Y)N + Y {g(AaX,Y )Ny + g(Age X, Y ) Noo

a=1
+ 9(Aar+ X, Y )Nyor + g(Agees X, Y)Ngeo- 1,

where A, Agr, Ags», Ag=+» the shape operators corresponding to the normals
Ng, Ng+y Nger, Nyrus, Tespectively. Hence the assumption (4.1) implies
AF=FA, AG=GA, AH=HA,
AprF = FAg, ApxG=GAy, Ag-H=HA,
Apn F = FAgun, ApxG=GAgsx, Ay H = HAge
Agees F = FAguesn, AgenrG = GAgren, Agenn H = HAgess.

(4.3)
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On the other hand, the Weingarten equations (3.2) are rewritten in the form

(3.21)
VxN =—AX
q
+ 3 {8a(X)No + 802 (X)Nax + sqms (X)Nor + Saren (X)Noere },
a=1
(3.22)

VxN, =~ A, X — 5,(X)N
q
+ 3 {8ab(X)Ny + b+ (X)Nos + sapes (X)Nyss + Sqpree (X)Npren },
b=1

(3.23)
VxNaw = — Ag- X — s0-(X)N

q
+ Z{Sa*b(X)Nb + Sa*b* (X)Nb* —+ Sa*br* Nb** -+ Saxhrrx Nb***}y
b=1

(3.24)
VxNawe = — Ages X — 500+ (X)N

q
=+ Z{Sa**b(X)Nb + Sgrepe (X>Nb"‘ + Sa**b**Nb** =+ Sa**b***Nb***}y
b=1

(3.25)
VxNyers = —Agers X — sques (X)N

q
4+ Z{Sa***b(X)Nb + Sgr**px (X)Nb* + Sgrnnprn Nb** - Sgrrnprnn Nb***}'
b=1
Since the structure vectors £,7,( are tangent to M, applying ¢ to the both

side of (3.23) and using (1.6), (2.1) and (2.3), we have
VxNg == FAX —u(AX)N + 5,(X)U

q
+ ) {8ab(X)Now — Sape (X)Np + apre (X) Npeor — Saprer (X)Nowe },
b=1

which and (3.23) imply
Ap X = FAX — 3,(X)U,  $¢+(X) = u(4aX).
Similarly, from (3.23) — (3.25), we can easily obtain that
Apr X = GAX — 5, (X)V
= HAg X — $4- (X)W = —FAgeer X + 840e (XU,
Agene X = HAGX — s, (X)W
= GAgX + 502 (X)V = FAgue X = 500+ (X)U,

(4.41)

(442)
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AX = — FAp X + 502 (X)U

44
(443) = — GAger X + $ar= (X)V = —HAgues X + squee (X)W,
i Age X = FAX — so(X)U
(444) = — HAgr X + squ (X)W = GAgrer X — 8quer (X)V,
Sa*“(X) = ’U(AaX) = w(Aa*X) = '—U(Aa***X)’
Sa***(X) = w(AaX) = —’U(Aa*X) = 'U,(Aa**X)’
(4.45)

84(X) = —u(Ag: X) = —v(Ag» X) = —w(Age== X),
802 (X) = u(AgX) = —w(Ager X) = v(Agrer X),

On the other hand, (2.11) and (4.3) imply FA,U = 0, from which together
with (1.5), (2.5), (3.13) and (4.45), it follows that

AU = u(AU)U = 54+ (U)U.

Similarly, from the other equations of (4.3), we can easily verify that
AU =5,+(DNU,  AgV = 50 (VYV, AW = 8500 (W)W,
AU = =5, (YU, AV = =540+ (V)V, AgsW = 500 (W)W,
AU = 540 (UYU,  ApgerV = —=5,(V)V, AgusW = —5,+ (W)W,
Ageer U = =80 (U)U,  AgreerV =84 (VIV, AgeusW = —5,(W)W.
Hence, from (4.45) and (4.5), we have

$a(X) = sa(V)u(X) = sa(V)v(X) = sa(W)w(X),

8= (X) = 8o (U)u(X) = 84+ (V)v(X) = sar (W)w (X)),

Sare (X) = Sao+ (U)u(X) = s (V)v(X) = 840+ (W)w(X),

Sarer (X) = sqeee (D)U(X) = $g0ee (V)0(X) = 800 (W)(X),
from which together with (2.13), it is clear that

(4.5)

(4.6) Sq = Sgr = Sgrx = Sgewr =0,

namely, the distinguished normal vector field N is parallel with respect to the
normal connection.
Next, we combine (4.4;) — (4.44) and (4.6), Then we have

(47) FAa =Aa=«, GAa ZAa»-*, HAa =Aa,***a a = 1,...,(].
Therefore, for any tangent vectors X,Y to M, we have from the first equation
of (4.7)
9(ApFXY) = —g(AFX,FY)
and consequently
J(Aar FX,Y) = g(Ap FY, X) = —g(FA» X, Y),

that is,
Aa* F = _FAa*,
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which and (4.3) imply F A, = 0. Thus it is clear from (4.7) that F2A, = 0,
which together with (2.5), (3.13) and (3.17) yields 4, = 0. Hence it follows
from (4.7) that

Aa :O, Aa* 1‘-0, Aa** :O, Aa*** :O7 a = 1,...,q.
O

For the submanifold M given in Lemma 4.1, we can easily see that its first
normal space is contained in Span{/N} which is invariant under parallel trans-
lation with respect to the normal connection from our assumption. Thus we
may apply Erbacher’s reduction theorem ([3, p.339]) and this yields

Theorem 4.2. Let M be as in Lemma 3.1. If, for any vector fields X,Y tan-
gent to M, the equalities (4.1) hold on M, then there is an (n +4)-dimensional
totally geodesic unit sphere S™** such that M C §™+4,

Finally, using Theorem 4.2, we prove

Theorem 4.3. Let M be as in Lemma 3.1. If, for any vector fields XY
tangent to M, the equalities (4.1) hold on M, then M is locally isometric to

S4n1+3(7.1) x S4n2+3<r2)
for some portion (n1,n2) of (n — 3)/4 and some 1,79 with r§ +r2 = 1.

Proof. By means of Theorem 4.2, there exists a real (n+4)-dimensional totally
geodesic unit sphere S™"*4 such that M C S™**. We notice that n + 4 is of
type 4r + 3 for some integer 7. Moreover, since the tangent space 1,,S™** of
the totally geodesic submanifold $"** at x in M is T,M © Span{N}, sS4
is an invariant submanifold of $4™*3 with respect to the Sasakian 3-structure
{€,n,¢} (that is, €, n and ¢ are all tangent to S™t* and

(TS C T, 8™, Y(T,8"H) C T,S™*,  6(T,S™ %) ¢ T8+

for any x in "), because of (2.1) and (2.3) (for definition, cf. [7, 12]). Hence
the submanifold M can be regarded as a real hypersurface of S"** which is
totally geodesic invariant submanifold of S%m+3.

Tentatively we denote S™™* by M’ and by ¢, the immersion of M into M’
and iy the totally geodesic immersion of M’ into S¥™*+3, Then, from the Gauss
equation (3.1), it follows that

V;1Xi1Y =i1VxY + h’(X,Y) =1 VxY + g(A/X, Y)N/,

where b/ is the second fundamental form of M in M’, N’ a unit normal vector
field to M in M’ and A’ the corresponding shape operator. Since i = iy 0 i,
we have

vhoilxig 0i1Y = igV’ilXilY + B(ZlX, 11Y)

4.8
( ) = i2(i1VXY+g(AIX,Y)N/),
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because M’ is totally geodesic in $4™+3. Comparing (4.8) with (3.1), we easily
see that
N =iyN', A=A
Since M’ is an invariant submanifold of $4™*3, for any X’ € TM’,
Gin X! = isd' X', igX' = gt X', 0isX' = ix0' X'
is valid, where {¢’,%’,8'} is the induced Sasakian 3-structure on M’ = S+
Thus it follows from (2.3) that
$1X = pig 0o i1 X = ipdi, X = iz(i1 F' X + v/ (X)N')
=iF' X +u(X)iaN' = iF'X + 4 (X)N,
WiX = iz 0y X = io¥'iy X = in(6G' X + v (X)N')
=iG'X + v (X)iaN' = iG'X + v (X)N,
0iX = 0iy 01X = is0'i X = ig(ir H'X + w' (X)N')
= iH'X + 0/ (X)iaN' = iH'X +w'(X)N.
Comparing those equations with (2.3), we have
F=F u=u;,G=G,v=vl; H=H v =v"
Hence M is a real hypersurface of S”t* which satisfies
F'A = AF, GA'=AG, HA =AH.
By means of Lemma 3.1 VA’ = 0 and also
A(piU +&) = pi(piU + &), A(piV +n) = ps(p:V + ),
A(piW 4 ) = pi(pW +¢), i=1,2,

where p;(i = 1, 2) are the solutions of equation p? — Ap — 1 = 0. Hence we can
easily verify that M is locally isometric to

S4H3 () x §4m 8 (ry)  (r2 412 = 1).

for some integers ny, ng with 4ny +4ny = n—3 (for more details, see [7, 8]). O

5. An integral formula for compact contact three C R-submanifolds

Let M be an (n + 3)-dimensional compact contact three C R-submanifold of
(p—1) contact three C R-dimension in $*™*3, where p = 4m —n. Assume that
the distinguished normal vector field N is parallel with respect to the normal
connection V+.

The equation (3.4) of Gauss implies

(5.1) Ric(X,Y) = (n+2)g(X,Y) + Y _{(trda)g(4aX,Y) — g(AZX,Y)},

(5.2) p=(n+2)(n+3)+ (n+3)%ul® - D trd,?
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where Ric and p denote the Ricci tensor and the scalar curvature, respectively,
and

(5.3) p=—

n+3

> (trAa) N,

is the mean curvature vector (cf {1, 2, 12}).
Now we prove

Lemma 5.1. Let M be an (n + 3)-dimensional compact contact three CR-
submanifold of (p — 1) contact three CR-dimension in a (4m + 3)-unit sphere
S§4m+3 where p = 4m — n denotes the codimension. If the distinguished nor-

mal vector field N is parallel with respect to the normal connection and if the
inequality

& {(Rie(U,U) + Rie(V. V) + Ric(W, W)
AU + AV + AW+ p = (n+3)[u)* = n® +5n+5
holds on M, then we have
(5.4) AF=FA, A G=GA, A H=HA
and A, =0,a=2,...,p.

Proof. In order to prove our lemma we use the following integral formula es-
tablished by Yano([11]):

(5.5)
/ div{VyU 4 VyV + Vg W — (divD)U — (divV)V — (divW)W} * 1
M

= [ {RieU,0) + 5ol — VU — (aive?
M
+RI(V, V) + 5| Zogl? — [V ~ (divV)?

+ Ric(W, W) + +%][$Wg||2 — IVW|? — (divW)?} x 1 = 0.
Now we take an orthonormal basis
{U, V, W, &, 1, {, €a, €ar, €qrr,Cqrer }a:l,‘.., t=(n—3)/4
of tangent vectors to M such that
egr 1= Fey, eg i=(Gey, €4« = Heg.
Then it is clear from (2.6), (2.10)-(2.11) and (3.10) that
t
div U = tr(FAy) = Y {g(FAieq, €a) + g(FAreqr, €ar)

a=1

+ g(FAlea**’ea**) + g(FAlea***,ea*u)} = (.



386 HYANG SOOK KIM, YOUNG-MI KIM, JUNG-HWAN KWON, AND JIN SUK PAK

Similarly, from (3.11)-(3.12), we have

(5.6) divU =0, divV=0, divW =0.

From (3.10)-(3.12}), we also have

(Lvg)(X,Y) = g(FA1 - AIF)X)Y), (Lvg)(X,Y) =9g((GA - 41G)X,Y),

(Zwg)(X,Y) = g(HA — A1H)X,Y)

and consequently

1Lugll® = IF A1 = A F|?, [ Zvg)® = |GAL — 4GP,
ISwal® = |HA — A H %

Using (2.6), (2.10)-(2.11) and (3.10)-(3.15), we also have

IVUI2 = 4242 — 1~ |42, OV |2 = A2 =1 - 4,V ]2,
IVWI? = trA — 1 - AW

On the other hand (5.2) yields

(5.7)
(5.8)

p
(5.9) trd} = —p+ (n+2)(n +3) + (n+ 3)jul® = Y trd>.

Substituting (5.6)-(5.9) into (5.5), we obtain
(5.10)
[ GUPA = PP 4 |GAy - A1GIP + | E 41~ AHI)

+ Ric(U, U) + Ric(V, V) + Ric(W, W) + | A, U|% + [ A1V + || A W |2

p
+3p—3(n+3)?||ul* - 3(n* +5n +5) ~|—3ZtrA§} *1=0.

a=2
Thus, if the inequality
S{RIC(U, 1) + Ric(V, V) + Ric(W, W)
HAWUN? + AV + WY + o = (n+3)*ul® > n® +5n+5
holds on M, then we have
A F=FA,, AG=GA,, A H=HA
and A, =0,a=2,...,p. |

For the submanifold M given in Lemma 5.1, we can easily see that its first
normal space is contained in Span{N} which is invariant under parallel trans-
lation with respect to the normal connection from our assumption. Thus we
may apply Erbacher’s reduction theorem ([3]) and this yields.
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Theorem 5.2. Let M be as in Lemma 5.1. If the distinguished normal vector
field N is parallel with respect to the normal connection and if the inequality

-;;{Ric(U, U) + Ric(V, V) + Ric(W, W)
H AU + AV + AW+ p = (n+3)*ul> > n® +5n+5

holds on M, then there is an (n + 4)-dimensional totally geodesic unit sphere
SnH+4 such that M C S™H,

Moreover, since the tangent space T, S™t* of the totally geodesic submani-
fold S™* at x in M is T, M ® Span{N}, S"** is an invariant submanifold of
§4m+3 with respect to {¢,1,0} becaunse of (3.2) and (3.11). Hence the sub-
manifold M satisfying the assumptions given in Lemma 5.1 can be regarded as
a real hypersurface of S"** which is totally geodesic invariant submanifold of
S4m+3 By the same method as shown in the proof of Theorem 4.3, we can
see that M satisfies the commutativity condition

AF =F'A, AG =G'4A", AH =HA.
Thus we have

Theorem 5.3. Let M be as in Lemma 5.1. If the distinguished normal vector
field N is parallel with respect to the normal connection and if the inequality
1
g{Ric(U, U) + Ric(V, V) + Ric(W, W)
AU+ [AVIP + AW+ p = (n+3)% |l = n® +5n+5
holds on M, then M is isometric to
STy x 842 ¥ (ry)  (r] 475 =1)

for some portion (ny,n2) of (n — 3)/4. In particular, if A = 0, then M is
1sometric to

§4m3(1//2) x §42+3(1/V/2).
Proof. Our assumptions imply
AF =FA, AG =G'A, AH =HA.
as mentioned above, and hence the former part of the theorem can be easily

proved by the same method as shown in the proof of Theorem 4.3. In particular,
if A =0, (3.19) yields 71 = ro = 1/1/2. a

Remark. We counsider special generalized Clifford tori in an (n + 4)-unit sphere
S™+4 defined by

My, i, = 84 H3(1/V/2) x §472%3(1/V/2)
n+5 4ng+4 n+5

:{(.’L‘1,...,$n+5)ERn+5|Zm?:1, Z .’E?:l/z, Z $3:1/2},
i=1 i=1

i=4n1+5
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where dn; + 4ns = n — 3 and n = 45 — 1 for some integer s. Since My, n, is a
real hypersurface of S"*4, its shape operator A; is of the form

A; = diag(l,-1)

for suitable orthonormal basis. The multiplicities of 1 and -1 are 4n; + 3 and
4ngy + 3, respectively (cf. [9]). Moreover, on the real hypersurface My, n,,

AU=¢§ AV=n A4W=(
(for details, see [8]) and consequently
1AUN? = | AV |P? = AW =1,
A= g(AU,U) = g(AV,V) = (AW, W) = 0.
Applying (5.1)-(5.3) to M,,, ,, we also obtain
Ric(U,U) =n+1, Ric(V,V)=n+1, Ric(W,W)=n+1,
trAd; = 4(ng —ny), trA2=n+3, p=(n+1)(n+3)+16(n —n2)>.

Hence, for M,,, »,, we have
%{Ric(U, U) + Ric(V, V) + Ric(W, W)
AU+ AV + AW+ p — (a4 3)%|lul® = n® +5n+5.
6. Some characterizations concerning sectional curvature

In this section we let M be as in Lemma 5.1. Suppose that the distinguished
normal vector field N is parallel with respect to the normal connection and that
the trace of the shape operator A; in direction of N vanishes, that is,

(61) tI‘Al = (.
Then (3.5) with a = 1, (3.16) and (6.1) yield
(6.2) > (Vidr)e: =0,

where {e;}i=1,..n is an orthonormal basis of tangent vectors to M and V; :=
V.,. Hence it follows from (3.5) with & = 1 and (6.2) that

D (ViVid))X = (R(ei, X)Ar)e;

for any vector X tangent to M, and consequently we have

(6.3) 9(V? Ay, A) Zg< (ei,€5)A1)es, Are;).

Thus we have

Theorem 6.1. Let M be as in Lemma 5.1 and let the distinguished normal
vector field N be parallel with respect to the normal connection. Suppose that the
trace of the shape operator Ay in direction of N vanishes and that the minimum
of sectional curvatures of M 1s zero. Then M is minimal and VA; =0 on M.
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Proof. The minimality of M is easily followed by our assumptions and Lemma
3.2.

Taking account of the Laplacian of trA2%, we have

[vaip == [ gv2a, a1
M M
which together with (6.3) yields

04 o< [ vara1-- /Zg (€5 An)e, Are;) 1

Now we choose an orthonormal frame {e;} of M such that
Alej =)\jej (j: 1,...,n).
Then it is clear that
Eg e’L?e] Al)euAle])

1
Z{g (€i,ej)Ares, Are;) — g(Ar1R(es, e5)e;, Arej)} = 3 Z(Ai - X)?Kij,
1,3
where K;; denotes the sectional curvature of the plane section spanned by
{e;, e;}. Hence, if the minimum of sectional curvatures of M is zero, the above
equation and (6.4) imply VA; = 0. O

By means of Theorem 6.1 we can obtain the following theorem under addi-
tional condition:

Theorem 6.2. Let M be as in Lemma 5.1 and assume that there exists an
orthonormal basis {N, Ny}a=2, .. p of normal vectors to M each of which is
parallel with respect to the normal connection. If the trace of the shape operator
A1 in direction of N vanishes and if the minimum of sectional curvatures of M
is zero, then there is an (n + 4)-dimensional totally geodesic unit sphere S™
of 8¥™+3 such that M C S+,
Proof. Under our assumptions it follows from Theorem 6.1 that

trd, =0, a=2,....p
Moreover, it is clear from (3.5) that, for any vector fields X, Y tangent to M,

(VxAL)Y — (VyA,)X =0

because of s =0, 1 <, < p, and consequently

> (Vida)e: =0,

where {e;};=1,..» is an orthonormal basis of tangent vectors to M. Taking
account of the Laplacian of trA2 and using the quite similar method as shown
in the proof of Theorem 6.1, we can easily see that

(6.5) VxAa =0, a=2...p
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for any vector field X tangent to M.
Differentiating the third equation of (3.13) covariantly and using the first
equation of (3.13) and (6.5), we have

AFX =0

for any vector fields X,Y tangent to M. Inserting FX instead of X in this
equation and using (2.5), (3.13) and (3.17), we have

Ay,=0, a=2,...,p.

Hence the first normal space of M is contained in Span{ N}, which is invariant
under parallel translation with respect to the normal connection from our as-
sumption. Thus we may apply Erbacher’s reduction theorem ([3]), which gives
the proof of our theorem.

Combining Theorem 6.2 and a theorem provided in [7, Theorem 5.2, p. 436),
we have

Theorem 6.3. Let M be as in Lemma 5.1 and assume that there exists an
orthonormal basis {N,Ny}a=2, . p of normal vectors to M each of which is
parallel with respect to the normal connection. If the trace of the shape operator
Ay in direction of N wvanishes and if the minimum of sectional curvatures of
M is zero, then M is isometric to a generalized Clifford surface:

SAMF3(((dng +3)/(n + 3)) ) x S*243(((4n + 3)/(n + 3)) %)
for some portion (ni,n3) of (n — 3)/4.

Proof. By means of Theorem 6.2 M can be regarded as a real minimal hyper-
surface of S"*2 which is a totally geodesic invariant submanifold of S4™+3,
Moreover, since VA; =0 and A1 F = FA;,A1G = GA{,A1H = HA,, we can
easily see that M is isometric to

S4n1+3(,’,1) X S4n2+3(7'2)

for some portion (ni,nz2) of (n — 3)/4 and some r1,75 with r# +r3 = 1 as
shown in the proof of Theorem 4.3. On the other hand, M is minimal and
consequently r; = ((4ny +3)/(n + 3))2,ry = ((4ng + 3)/(n + 3))3. Moreover,
using (3.19), we can easily see that the minimum of sectional curvatures of
those hypersurfaces is zero. 0

Corollary 6.4. Let M be a compact, minimal real hypersurface tangent to the
structure vector fields &€,m,( of a (4m+3)-dimensional unit sphere S4™+3 . If
the minimum of sectional curvatures of M is zero, then M is isometric to

SAmMF3(((4ny + 3)/(4m + 2))7) x §42F3(((4ny + 3)/(4m + 2))7)

for some portion (ny,ng) of m — 1.
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