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EXTINCTION AND PERMANENCE OF A KIND OF
PEST-PREDATOR MODELS WITH IMPULSIVE EFFECT
AND INFINITE DELAY

XINYU SoNG AND HonNgJiaN Guo

ABSTRACT. In this paper, a kind of pest-predator model with impul-
sive effect and infinite delay is considered by the method of chain trans-
form. By using Floquet’s theorem, it is shown that there exists a globally
asymptotically stable periodic pest eradication solution when the impul-
sive period is less than or equal to some critical value which is a directly
proportional function with respect to the population of release. Further-
more, it is proved that the system is permanent if the impulsive period is
larger than some critical value. Finally, the results of the corresponding
systems are compared, those results obtained in this paper are confirmed
by numerical simulation.

1. Introduction

Biological control and chemical control are two methods of pest control.
There are many articles on the pest-control system (see [3]~[7]) which have
obtained many excellent results. In biological control, harvesting pest and
releasing predator {such as natural enemies) are usually used in the biological
pest control. Xianning Liu and Lansun Chen (see [3]) develop the Voltka-
Volterra predator-prey system

T1(t) = 2 (t)[’f'l —anz1(t) — ar2r2(t)],
(1.1) { To(t) = z2(t)[—r2 + an1z1(t)],
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by introducing an impulsive constant planting effect periodically for the preda-
tor, that is,

xl(t) = xl(t)[rl — 1121 (t) - a12x2(t)], nr
(1.2) Z2(t) = z2(t)[—72 + anrz1(t)], } t# n,
A.’L‘l (t) = 0, t=nr
Azy(t) = b, =1

where z;(t), z2(t) denote the densities of the pest and predator (natural en-
emies) at the time t respectively, r1 > 0 is the intrinsic growth rate of pest,
r9 > 0 is the death rate of the predator, a;; is the coefficient of intraspecific
competition or density dependence, a2 > 0 is the per-capita rate of predation
of the predator, ag; is the product of the per-capita rate of predation and the
rate of the converting pest into predator, 7 is the period of the impulsive effect,
b is the population of the predator released.

The dynamics of system (1.1) are very simple, z2(t) goes extinct and z1(t)
tends to r;/a11, the capacity of the prey, if there is no positive equilibrium
(r1/a11 < rg/az1) or there is a positive equilibrium which is global asymptoti-
cally stable (r1/a11 > 72/a21). In each case the prey cannot be extinct. That is
why the classical approach of this kind in pest control is not so effective. Usu-
ally biological pest control requires the introduction of a predator decreasing
the pest population to an acceptable level. It provides only a short term results
as after some time this kind of predator-prey system will reach its coexisting
equilibrium no matter how large the initial density of the predator is. System
(1.2) suggests an approach in pest control by adding some suitable amount of
predator after some fixed period of time which proves more effective.

Xianning Liu and Lansun Chen study the extinction of the prey in the
impulsive system (1.2) and the permanent property of (1.2) in case that the
impulsive invasion of predator be disaster to the prey which need protection.
The conditions of the extinction and permanence of (1.2) are given in [3]. The
solution of (1.2) z1(t) — 0, z2(t) — z3(t) as t — oo provided one of the
following conditions (A1) and (A2) is satisfied: (Al) b > rirer/a12, (A2)
bexp(—rs(t — nt))

te
1 — exp(—ra7)

b= rira7/a12 and zgo , where xg2 =

2 1 —exp(—ra7)
(nm,(n+1)7], n€ N, x3(07) = m. System (1.2) is permanent if
b < ryre7/a1a.

Another important method for pest control is chemical control (such as
pesticide spray). Pesticides are useful because they quickly kill a significant
portion of a pest population and they sometimes provide the only feasible
method for preventing economic loss. During investigating the pest-predator
models under pulse use of insecticide, Zhonghua Lu and Lansun Chen (see [4])
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develop (1.1) by harvesting the pest, then (1.1) becomes

&1(t) = z1(t)[r1 — an121(t) — ar2z2(2)], nr

(1.3) m2(t) = zo(t)[—r2 + ag12: (1)), } LA
Az (t) = —Elml(t) t=nr

Azs(t) = S

where E; represents the fraction of population that dies due to the pesticide.
If By > Ef =1—¢e "7, then (0,0) equilibrium of system (1.3) is stable and
there does not exist boundary nontrivial periodic solution. If vy /a1; < 7o Ja2
and Fy < Ef, or ri/a11 > refas and E}* < By < Ef, Ef* =1 -
exp(0117"2 — a1’

a
(Z1(¢),0), VSQIi’liCh is asymptotically stable.

However, pesticide pollution is not only recognized as major health hazard
to human beings and to natural enemies but also is resited by pest. And the
latter results in the use of high rates and more toxic materials to combat pests.
Beneficial insects are often susceptible to chemical insecticides applied for the
target pest. One of the side effects of the high rates of pesticide use is that
natural enemies and other small animals that might otherwise feed on pests are
killed and pests population burst out once again after beneficial insects being
killed (see [5]).

The main purpose of this paper is to construct a simple mathematical
model of a system of biological control by periodic release of natural ene-
mies and investigate the dynamics of this system. For simplicity, we denote
Ty = ZCl(t), Ty = CL‘Q(t), T3 = wg(t), A.Tl = 131('TL’7'+) - Qﬁl(nT), ACL‘Q =
zo(n7t) — zo(n7), Azz = z3(n7t) ~ z3(nT). We suggest an impulsive system
including one prey and one predator to model the process of periodic release of
natural enemies at fixed moments and consider a kind of pest-predator models
with impulsive effect and infinite delay described by the system as follows

7), then there exists a unique periodic predator-free solution

&1 = z1[r1 — a1 — a12%2), } bt
(1.4) Zg = xa|—r2 + an fioo F(t — s)x1(s)ds], ’
Az =0, t=nrt
A.’EQ =p ’

where 7 is the period of the impulsive release, p > 0 is the amount of the
predator released, a > 0. The exponential weight function satisfies

¢ ¢
/ F{t—s)ds= lim ae” s =1,

—00 —— 00 A
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Let F(t) = ae™®, z3(t) = ffoo F(t — s5)x1(s)ds, then (1.4) becomes

&1 = ¢1[r1 — a1 — a12%2),
&g = Ta[—re + anzsl, t #nr,
.ig, = a(ml - .’Eg),

(1.5) Az, =z1(n7t) — z1(nT) =0,
Azy = zo(n7t) — 29(n7) = p, t=nr.
Azz = z3(ntt) — 23(n7T) = 0,

Because

¢ ¢
/ F(t—s)ds= lim ae” s =1,

—-00 A—-—00 A

ffoo F(t — s)x1(s)ds is convergent,

Azs(t) = [ F(t— s)a(s)ds — [T F(t — s)z1(s)ds
= ge=anT [T F(t—s)z1(s)ds =0.

nT

From discussion above, the property of (1.4) can be obtained by investigating
(1.5), so in the following we will consider (1.5) mainly.

2. Periodic pest-free solution and its stability property

In the absence of the pest z, that is £; = 0,z3 = 0, system (1.5) reduces to

.’i)g = —T9X9, t;é nr,
(2.1) { Az = p, t=nr.

Integrating and solving the first equation of the system (2.1) at the interval
(nr, (n + 1)7], we have

+) —ra(t—nT) .

z2(t) = z2(nt)e

By means of the stroboscopic mapping;:
za(nt)e™ ™" +p =zo(n7t) = zo((n + 1)),
we can get the fixed point of the mapping;:

- —~ p
o€ r2T +p = X9 = .'172(0+) = 1—6——7”27’

So the system (2.1) has a periodic solution which eradicate pest at the interval
(n7, (n+ 1)7]:

g p —ro(t—n
Zt) = T O
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The general solution of the system (1.5) can be obtained by the iterative method
from (n7, (n + 1)7] to (0, 7]

=) = xQ(m’ﬂe_Mt"m) = (z2(nT) + p)e‘r’z(t"m)
= [1;2(0+)e—r2n'r +p(e—r2n7' 4T 4 1)]6——r2(t_n7-)

—rat
_ f\—rot _PE? p —ra(t—nT)
- x2(0 )e : 1 — 6—1‘27‘ 1 _— e—TgTe "
= (22(0") — — 2 )e~T2t 1 T5(1).

1 — e——rgr

From discussion above, we have

Theorem 2.1. The system (2.1) has a positive periodic solution z3(t), and
xo(t) — z2(t),t — oo for all solution which satisfy the initiate condition

z2(0%) = 1—1-):7 > 0. The system (1.5) has a periodic solution which
— € T
) N pe~r2(t—n‘r)
eradicate pest (0,z3(t),0) = (0, T )

Lemma 2.1. [2] Assume that m € PC[R., R| with points of discontinuity at
t =ty and is left continuous att =tg, k=1,2,..., and

D_m(t) < g(t,m(t)), t#tx, k=1,2,...,
m(t;f) ka(m(tk)), t=1tr, k=1,2,...,

where g € C[R+ x R4, R], ¥ € C[R, R] and yr(u) is nondecreasing in u for

each k = 1,2,.... Let r(t) be the maximal solution of the scalar impulsive
differential equation

u:g(t,u), t#tk,kzl,Q,...,

uth) = Yi(ulty)) >0, t=tk, tx >to, k=1,2,...,

u(tg') = U0,

existing on [to,00). Then m(t) < up implies m(t) < r(t), t > to.

Theorem 2.2. Let (x1,22,23) be any solution of system (1.5). Then (0,z3(t),

—_ —7ro(t —
0) is globally asymptotically stable 7 < %, where T3(t) =L ei{p—(e)gé——r;;))

te (nr,(n+1)7], ne N, 73(0%) = T—oxp(—re7)’

Proof. By means of the theory of Floquet and z1 = y:1(t), z2 = y(t) +
Z3(t), 3 = ys(t), we linearize the system (1.5) and obtain

91(t) = (r1 — a1222(t))v1,

Y2(t) = —ray2 + ao1z2(t)ys(t), t # nr,
(2 2) 93(75) = a(yl (t) — Y3 (t))7
' Ayl = Oa
Ays =0, t=nT.

Ays = 0,
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Let ®(t) be the fundamental matrix of (2.2), then ®(¢) must satisfy

d(t)
5 - A@)2(t),

where
1 —a12%3(t) 0 0
A(t) = 0 —r2  anZz(t)
a 0 —a
From the fourth to the sixth equations, we can obtain
y1(ntt) 1 00 y1(n7)
ye(ntt) | =] 0 1 0 yo(nT)
ya(ntt) 0 01 y3(nT)

The monodromy matrix of system (2.2) is:

100
M= 010 o(r),
0 1

o(r) = exp/ A(t)dt) = ®(0) exp(4),

where ®(0) = E, let A\, A2, A3 be eigenvalues of matric 4,

Al = / (7‘1 — algﬁ(t))dt, Xz = —7yT, Xg = —ar,
0

Therefore, the eigenvalues of M are A\; = exl, Ay = 6X2, Az = s respectively.
It is clear that Ag, A3 < 1. Our following purpose is to prove A\; < 1, that
iS, fOT(rl - alza‘\gl(t))dt <0.

fOT(T'l — algfg(t))dt =77 — Qi3 fOT Eg(t)dt

— p e T t
—’I"lT-algm 0 2tdt
p -

=717 = alzm("_)( "t -1)

a12p
=mMT - —

T2
a a .
Ifryr — ip <0, r< 2Py < 1, the periodic solution of system (1.5) is

T172
locally stable.
In the following, we prove the global attractivity. Noting that Z2(t) >
—r922(t), we consider the impulse differential equation

y(t) = —ray(t), t % nt,
Ay(t) = y(nrt) —y(nt) =p, t=n7,
y(0t) = z5(0%) > 0.

From Lemma 2.1, we have z3(t) > y(t), y(t) — z3(t), t — co. Hence
(2.3) z2(t) > y{t) > za(t) — ¢,
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(2.3) holds for all ¢ large enough. For simplification we may assume (2.3) holds
for all t > 0.

From the first equation of system (1.5), we have
(24) j]l(t) < ccl(t)(rl — (1,12(/1-,‘\5(0 — E))
Integrate (2.4) in (n7, (n + 1)7]

z1((n+ 1)7) < z1(n7)exp((r1 + a1oe)T — %)
Let 0 = (r1 + a128)7 — G120 < 0, we can choose € > 0 such that ¢ < 0, which
T2

yields
z1(n7) < 21(07)exp(na),
Thus z1(n7) — 0 as n — oo, therefore z1(t) — 0, t — oo since 0 < z;(t) <
x1(nT)exp(ri7).
For z3: Since z1(t) < z1(0%)exp(no) = g(n), and g(n) — 0 when n — oo,
then &3 < a(g(n) — z3),

3(t) 9(n) — (9(n) — z3(n7))e= =)

(n)(l _ e—a(t n’r)) +m3(n’r)6_a(t m—)
9(n)(1 — ™) + z3(n7)e ™"
z1(0H)exp(no)(1 — e797)(1 + €797 4 7227
4+t e—anr) + m3(0-4—)6—na‘r
z1(0)exp(no)(1 — e™%"7) + z3(07)e o7,

The right side of inequality (2.5) tends to zero as n — 00, so z3(n7) — 0 as
n — oo. In addition, since z3(t) < g(n)(1 — e~*C") 4 z3(nT)e """ then
z3(t) — 0, n — oo.

Next, we prove that

25 @D

ININ TN

IA

z2(t) — T2(t), t — 00
if tlim z1(t) =0, tlim x3(t) = 0.
For0 <e < T—2, there exists a 7 > 0 such that 0 < z1(t) < ey, 0 < z3(t) <
az1
€1, whent > T
~r2x2(t) < .’i)2(t) < .’Ez(t)(*?"g -+ a21€1),

y1(t) < 22(t) < wa(t), v1(t) — 22(1), va2(t) — (D),
where y1(t), ya2(t), y2(t) is the solution and periodic solution of the following

equation
n(t) = —ran(¥), t#n7, 92(t) = y2 () (=72 + az1€1), t#n7,
Ay (t) = p, t=mn7, and{ Aya(t)=p, t=nr,
yl(O+) = x2(0+) >0, y2(0+) — z2(0+) >0,

~ — t—
2(t) = pexp(—r2 + aner)(t - n7) nr<t<(n+1)r
1 —exp((—r2 + a21€1)7)

From y;(t) < z2(t) < y2(t), y1(t) — T2(t), y2(t) — ya(t), we have
Ta(t) — g9 < 22(t) < Ga(t) + €9,
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then y(t) — z3(t), as &1 — 0, therefore z2(t) — Z3(t), t — oo. The proof is
completed. O

3. Permanence of the system (1.5)

Theorem 3.1. If roai; — ag1m > 0 holds, there exist constants My, Moy, M3
> 0 such that 1 < My,z2 < My, 3 < M3 for each positive solution x(t) =
(@1(t), z2(t), z3(t)) of (1.5) with t large enough.

Proof. From the first equation of system (1.5), we have &1(¢) < z1(¢)(m —
a1121(t)). Considering the system

ya(t) = ya(t)(r1 — an1ys(t)), t#n7,
(3.1) Ayz(t) =0, t=nT,
y3(0%) = 22(0%) > 0,

the solution of (3.1) is

ys(t) = ry(0)
a11y3(0%) + [r1 — anys(0F)]e="1?’
y3(t) — ;7”1_ = M; as t — oo, therefore there exists a T3 > 0, z1(t) < y3(t) <
11
M; as t > T;. Furthermore, from

¢ ¢
z3(t) = / ae'“(t_s)xl(s)ds < M1/ ae" %) dg = M,

—o0
we can get z3(t) < My = M.
From the second equation of system (1.5), we have
Ta(t) < z2(t)[—r2 + a2 Ma].

If roa11 — agiry > 0 holds, then 6 := —ry + a21 M1 < 0, so we have

z2(t) < (22(0) = o5 )e™ + E5 (1)
there exists a Ty, when t > T,
—~ p
t) < < = M.
22(t) <Z(t) +e < 1 —exp{—raT) te 2

for any € > 0, that is z5(t) < My, therefore T3 = max{T1,T>}, when ¢t > T3,

z1(t) < Mi, z3(t) < My, z2(t) < M;. The proof is completed. O
Theorem 3.2. The system (1.5) is permanent if T > (;—172"2.
172

Proof. Suppose z(t) is a solution of (1.5) with z(0) > 0. From Theorem 3.1 we

may assume £2(t) < Ms. Noting that #1(¢) < z1(¢)(r1 —a1171(t)), Considering

(3.1) and the comparison theorem, we have z1(t) < y3(t) < My = (—;l, thus
11

r
z1(t) < a—l + €3, €3 > 0. Without loss of generality, we may assume z,(¢) <
11
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r
RETNE ez for t > 0. Similarly, we can assume x3(t) < M; + 3 = M3. Let
a1y

e 27 —_ —
my = 1—’? —e >0, ¢ > 0. Since m3(t) — & < z2(t) < z3(t) + ¢, and
~ P —roT
CI’J2(t) 2 1—_—;__7;_—, l'Q(t) > ma.

In the following, we first prove that there exists 77; > 0 such that 1 (t) > 7y
for t large enough.

Let 0 < m; < T2 We will prove that ,z1(t) < my doesn’t hold for all

az
t>0.
Step 1. Choose ¢4 large enough such that o1 := (11 — a;1m1 — a1264)7 —
a
Ay, According to the assumption and the second equation of
T2 — a1 M3

system (1.5), we get
E9(t) < zo(t)(—r2 + ag1 M3),
ya(t) is the solution of the following equation
Ua(t) = ya(t)(—r2 + az1 M3), t# n,
(3.2) Ay, (t) = p, = nT,
ya(0T) = z9(0%) > 0.

The periodic solution of (3.2) is

~ pexp((—r2 + ag1 M3)(t — n7)
t) = , nt<t<{(n+ 1T
y4( ) 1 —exp((—rg +a21M3)T) ( )
Furthermore, there exist Ty > 0 and &5 > 0 such that z2(t) < ya(t) <
Jalt) + &5 for t > Ty,

(33) I'El(t> 2 irl(t>[7‘1 —ai11mi — alz(ﬂ(t) + 65)], t Z Ti,
there exists Ny € Z,, N1T > Ty, integrating (3.3) on (n7, (n +1)7], n > N,
we have

zi(ln+1)1) 2 xl(nT)exp(f(nH)T(rl —ajimy — a12(ya(t) + e5)dt)

nTtT
= z1(n7)exp(o1),

therefore
1 (N1 + 1)7) > 21 (N17)exp(kor) — oo.
It is contradiction to the boundedness of z1(t).
Step 2. If z1(t) > m, for all ¢ > t1, then our aim is obtained. Otherwise,
z1{t) < my for some t > t;. Setting t* = tigtf {z1(t) < m1}, we have z1(t) >
< t1
my, t € [t1,t*), t* € (n17, (n1 + 1)7], n1 € Z+. Since z1(t) is continuous,it is
clear that z1(t*) = m;.
Choose na,ng € Z4 such that
1 £3
In ,
—To+anMs M +p

NoT >
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exp(6(ng + 1)7)exp(nzor) > 1, d =r; —apnmi — a12Ms > 0.
Set 7/ = ny7T+ng7, we claim that there must exists at’ € ((ny+1)7, (n;+1)7+
7'] such that z1(t') > m;. Otherwise z1(t) < mq, t € ((ny+1)7, (n1+1)7+7].
Considering (3.2) with y4((n1 + 1)77) = z2((n1 + 1)), we have

) = (w0 - )
x exp[(—ra + a2 M3)(t — (n1 + 1)7)] + Ja(t)
fort€ (nt,(n+1)7}, n1+1<n<n;+1+ny+n3. Then
[ya(t) — ga(t)] < (Mz + p)exp(—r2 + ag1 M3)(t — (ny + 1)7) < &5

and z2(t) < ya(t) < ga(t) +e5, (N1 +1+n2)7 <t < (ng + 1)1 + 7, which
implies that #1(¢) > z1(¢)[r1 — a11m1 — a12(¥a(t) +e5)], (M +1+n)r <t <
(n1 + 1)7 + 7/, that is to say, (3.3) holds.
Similarly, there are two possible cases for
z1((n1 + 14+ ne +n3)7) > z1((n1 + 1 + n2)7)exp(nzoy)

ont € (t*, (n; + 1)7).
Case (a). If 21(t) < mq1,t € (¢t*,(n1 + 1)7], then z1(t) < my holds for all
t € (t*, (n1 + 1+ n2)7], system (1.5) gives

(3.4) £1(t) > z1(t)(r1 — a1amy — a1aM3) = 8z (¢),

§ =11 —anmy —a1aMs, t € (t*, (n1+1+n2)7]. Integrating (3.4) on (¢*, (n1 +
1 4+ na)7], we have

z1(n1 + 1+ na)7) > myexp(d(ng + 1)7),

thus
z1(n1 + 14 ng + n3)T) > myexp(d(nz + 1)7)exp(naor) > ma,

which is a contradiction to z;(t) < m;.
Further let £ = tigxtf*{xl(t) > my}, then z1(f) = my and (3.4) holds for

t € [t*,1). Integrating (3.4) on [t*,?) yields
z1(t) > 1t )exp(d(t — t*) > m1exp(3(1 + nz + n3)7) = ™My.

For t > ¢, the same argument can be continued since x;(f) > m;. Hence
z1(%) >y for all t > t;.

Case (b). There exists a t” € (t*,(ny + 1)7] such that z;(¢") > m,. Let
t= tigltf*{xl(t) > m1}, then z;(t) < my, t€ [t*,1) and 21(f) = my. (3.4) holds

for t € [t*, 7).
Integrating (3.4) on t € [t*,1), we have

z1(t) = z1(t*)exp(6(t — t*) > myexp(6(7) > My.

This process can be continued since z; (?) > my and we have z1(t) >y, t2>
t.
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Thus in both cases, we conclude z;(t) > m; for all ¢ > t,. From x3(t)
fioo ae~ %)z (s)ds and x1(t) > ™y for all t > ¢ we can get x3(t)

™ ffoo ae~*t=35)dg = 77;. The proof is completed.

O IA

4. Discussion

\ )
oL e -
o 10 20 t 30 4l 5 1] 10 20 4 30

W¥ithout Impulse Without Impulse

@ 50

~ @ @ N ® @

) 0 2, B 40 50
Vithout Impulse

Fig.1 The numerical graph of system (4.1){without Releasing)
ri=1rz=15a=1a11 =01,a12 =01 a0 = 0.2,p = 10,29 = b;
Yo = 20,20 = 5;7 = 1;7 > T1 = 0.666666666667.

In this paper, we investigate a kind of pest-predator system with infinite
delay and periodic constant impulsive effect on predator at fixed moment. We
have shown that there exists a globally asymptotically stable pest periodic
eradication solution.

If system (1.5) has neither impulsive release nor continuous release, it be-
comes

I = CEl{’I‘l — (111$1(t) b a12m2(t)]1
(4.1) Ty = xg[~T2 + agi T3],
i3 = a{z; — z3),

which have two equilibria (0,0,0) and (—=,0,—>). If rpa1; — raazm > 0,
ail  an
(0,0,0) is unstable and (%,O, 7q—l) is stable equilibrium, (4.1) also has a
11 a1

e1s1 s To ToG11 —T1G921 T2
unstable equilibrium (—, ————= —=).
@21 12021 a21
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Fig.2 The numerical graph of system (4.2)(Continuous Releasing)
r = 1,7‘2 = 1.5,a = 1,(111 = 0.1,&12 f 0.1,(121 = O2,p = 10, Ty = 5;
yo = 20,20 = 5;7 = 1;7 > T7 = 0.666666666667.
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Fig.3 The numerical graph of system (1.5)(Impulse Releasing)
rn=1,rs=15a=1a11 =0.1,a12 = 0.1,a01 =0.2,p = 10,29 = 5;
yo = 20,20 = 5;7 = 1;7 > T1 = 0.666666666667.

If we replace the pulse release predator (nature enemy) in system with con-
tinuous release, the system (1.5) becomes
&1 = x1[r1 — annz1(t) — a1272(t)]
(4.2) To = T2[—Te + agiz3] + i_—)
&3 = a(zy — x3)
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Fig.4d The numerical graph of system (1.2)(Impulse Releasing)

ri=1ro=15a=1,a11 =01,a10 =0.1,a21 =0.2,p = 10,29 = 5;
yo = 20,20 =5;7 =1;7 > 17 = 0.666666666667.
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The numerical graph of system (4.1)(without Releasing)
r = 1,7‘2 = 1.5, a = 1,0,11 = 0.1, a2 :/\0.1,0,21 = 0.2,p = 10,930 = 5;
yo = 20,20 = 5;7 = 0.5;7 < T1 = 0.666666666667.

Fig.5

There also exists a pest eradication equilibrium for system (4.2), that is
E(0, i, 0) which is globally stable if the condition rireT—pay2 < 0 is satisfied,
ToT
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Fig.6 The numerical graph of system (4.2)(Continuocus Releasing)
™ = 1,7"2 = 1.5,(1 = 1,a11 = 0.1,(112 =A0.1,a21 = 02,p = ].0, To = 5;
yo = 20,20 = 5; 7 = 0.5;7 < T = 0.666666666667.

i 5 ®, % F) % 8 [ L] F) F3
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[} H LA F P
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Fig.7 The numerical graph of system (1.5)(Impulse Releasing)
r1=4rz=15a=1a11=01,a12=01,an = 0.2,p=10,29 = 5;
yo = 20,20 = 5;7 = 0.5;7 < T = 0.666666666667 .

a
that is, 7 < Q. The results is the same as our system (1.5). Although pests

172
can both be eradicated by controlling 7 in (1.5) and (4.2), it is impossible to
release a natural enemy continuously in pest control. If predators are released
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Fig.8 The numerical graph of system (1.2)(Impulse Releasing)
ry = 1,’[’2 = 1.5,(1 = 1,&11 = 0.1,0,12 Z/\O.l,agl = 02,]) = 10,1‘0 = 5,
yo = 20,20 = 5; 7 = 0.5;7 < T = 0.666666666667.

continuously, predators will be another disaster after the extinction of pests.
So it is more reliable that predators are released impulsively.

From Theorem 2.2 we know the periodic pest eradication solution (0,z2(¢),0)
is globally asymptotically stable provided 7 < %Z = ﬁ.

If the system (1.4) has no infinite delay, the sylsttzem (1.5) becomes (1.2}. The
dynamics behaviors of (1.2) had been investigated by [3]. Our results in this
paper are the same as the results in [3], which show that there is no effect for
infinite delay on the system.

From the discussion above, we can see that ﬁ is the critical value of the re-
lease period which directly propositional function with respect to p. Therefore,
we can determine the parameter p on the cost of releasing natural enemies such
that 7 < 7}. In Fig.7 T, = 0.666666666667, that is to say, we can make the im-
pulsive period smaller than 0.666666666667 in order to drive a pest population
to extinction. N

Fig.1~Fig.4 (7 > T1) show that the system (1.5) and (1.2) is permanent.
Fig.5~Fig.8 (1 < fl) show there exists a globally asymptotically stable pest
eradication periodic solution of system (1.5) and (1.2). ,

The use of natural predators for pest control aims to inhibit any large pest
increase by a corresponding increase in the predator population. The aim is to
keep pests at acceptably low levels: not to eradicate them, only to control their
populations. To choose the policy of release, there are two ways: The first is
if the period of release 7 is given,we will choose the appropriate population of
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release p. The second is if the population of release is given, we will choose
the appropriate period of release. The larger the period is, the more the pests
are, so we can control the pest population below some given levels by choosing
an appropriate impulsive period 7. Therefore, the periodic release of natural
enemies at fixed moment changes the properties of the system without impulse,
and it is a highly effective method in pest control which the classical method
cannot emulate.
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