DOI QR코드

DOI QR Code

INSTANTONS ON CONIC 4-MANIFOLDS: FREDHOLM THEORY

  • Li, Weiping (Department of Mathematics Oklahoma State University) ;
  • Wang, Shuguang (Department of mathematics University of Missouri Columbia)
  • Published : 2007.03.31

Abstract

We study the self-duality operator on conic 4-manifolds. The self-duality operator can be identified as a regular singular operator in the sense of $Br\"{u}ning$ and Seeley, based on which we construct its parametrizations and closed extensions. We also compute the indexes.

Keywords

References

  1. J. Bruning and R. Seeley, An Index theorem for first order regular singular operators, American J. Math. 110 (1988), no. 4, 650-711
  2. J. Bruning and R. Seeley, Regular singular asymptotics, Adv. Math. 58 (1985), no. 2, 133-148 https://doi.org/10.1016/0001-8708(85)90114-8
  3. J. Cheeger, On the Hodge theory of Riemannian pseudomanifolds, Proc. Symp. Pure. Math. 36 (1980), 91-146
  4. J. Cheeger, Spectral geometry of singular Riemannian spaces, J. Differential Geom. 18 (1983), no. 4, 575-657 https://doi.org/10.4310/jdg/1214438175
  5. S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-manifolds, Oxford Mathematical Monographs, Oxford University Press, Oxford, 1990
  6. S. Donaldson and D. Sullivan, Quasiconformal 4-manifolds, Acta Math. 163 (1989), no. 3-4, 181-252 https://doi.org/10.1007/BF02392736
  7. N. Dunford and J. Schwartz, Linear operators Part II : Sepctral theory, Sefl adjoint operators in Hilbert space, Interscience, New York 1963
  8. J. Etnyre and K. Honda, On symplectic cobordisms, Math. Ann. 323 (2002), no. 1, 31-39 https://doi.org/10.1007/s002080100292
  9. R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999), no. 5, 1415-1443 https://doi.org/10.4310/ATMP.1999.v3.n5.a5
  10. P. B. Kronheimer and T. S. Mrowka, Gauge theory for embedded surfaces, I, II, Topology 32 (1993), no. 4, 773-826 and 34 (1995), no. 1, 37-97 https://doi.org/10.1016/0040-9383(93)90051-V
  11. M. Lesch, Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods, Teubner-Texte zur Mathematik 136, Stuttgart, Leipzig 1997
  12. J. Weidmann, Linear Operators in Hilbert Spaces, GTM 68, Springer-Verlag 1980