References
- R. Badora, Report of Meeting: The Thirty-fourth International Symposium on Functional Equations, June 10 to 19, 1996, Wista-Jawornik, Poland, Aequationes Math. 53 (1997), no. 1-2, 162-205 https://doi.org/10.1007/BF02215972
- C. Borelli, On Hyers-Ulam stability for a class of functional equations, Aequationes Math. 54 (1997), no. 1-2, 74-86 https://doi.org/10.1007/BF02755447
- I.-S. Chang and Y.-S. Jung, Stability of a functional equation deriving from cubic and quadratic functions, J. Math. Anal. Appl. 283 (2003), no. 2, 491-500 https://doi.org/10.1016/S0022-247X(03)00276-2
- I.-S. Chang, E.-H. Lee, and H.-M. Kim, On Hyers-Ulam-Rassias stability of a quadratic functional equation, Math. Inequal. Appl. 6 (2003), no. 1, 87-95
- S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64 https://doi.org/10.1007/BF02941618
- Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434 https://doi.org/10.1155/S016117129100056X
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436 https://doi.org/10.1006/jmaa.1994.1211
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941). 222-224
- D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional equation in Several Variables, Progress in Nonlinear Differential Equations and their Applications, 34. Birkhauser Boston, Inc., Boston, MA, 1998
- D. H. Hyers, G. Isac, and Th. M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc. 126 (1998), no. 2, 425-430 https://doi.org/10.1090/S0002-9939-98-04060-X
- D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153 https://doi.org/10.1007/BF01830975
- K.-W. Jun and Y.-H. Lee, On the Hyers-Ulam-Rassias stability of a pexiderized quadratic inequality, Math. Inequal. Appl. 4 (2001), no. 1, 93-118
- S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), no. 1, 126-137 https://doi.org/10.1006/jmaa.1998.5916
- Y.-S. Jung and K.-H. Park, On the stability of the functional equation f(x + y + xy) =f(x) + f(y) + xf(y) + yf(x), J. Math. Anal. Appl. 274 (2002), no. 2, 659-666 https://doi.org/10.1016/S0022-247X(02)00328-1
- H.-M. Kim and I.-S. Chang, Stability of the functional equations related to a multiplicative derivation, J. Appl. &. Computing (series A) 11 (2003), 413-421
- Zs. Pales, Remark 27, In 'Report on the 34th ISFE, Aequationes Math' 53 (1997), 200-201
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300 https://doi.org/10.1090/S0002-9939-1978-0507327-1
- Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284 https://doi.org/10.1006/jmaa.2000.7046
- Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130 https://doi.org/10.1023/A:1006499223572
- Th. M. Rassias, Functional equations and Inequalities, Mathematics and its Applications, 518. Kluwer Academic Publishers, Dordrecht, 2000
- Th. M. Rassias and P. .Semrl, On the behavior of mappings which do not satisfy HyersUlam stability, Proc. Amer. Math. Soc. 114 (1992), no. 4, 989-993 https://doi.org/10.1090/S0002-9939-1992-1059634-1
- Th. M. Rassias and J. Tabor, Stability of mapping of Hyers-Ulam Type, Hadronic Press Collection of Original Articles. Hadronic Press, Inc., Palm Harbor, FL, 1994
- Th. M. Rassias and J. Tabor, What is left of Hyers-Ulam stability?, J. Natur. Geom. 1 (1992), no. 2, 65-69
- P. .Semrl, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral Equations Operator Theory 18 (1994), no. 1, 118-122 https://doi.org/10.1007/BF01225216
- J. Tabor, Remark 20, In `Report on the 34th ISFE, Aequationes Math. 53 (1997), 194-196
- S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York 1964
Cited by
- Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras vol.2012, 2012, https://doi.org/10.1155/2012/961642
- APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C*-TERNARY ALGEBRAS vol.47, pp.1, 2010, https://doi.org/10.4134/BKMS.2010.47.1.195
- CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM vol.47, pp.1, 2010, https://doi.org/10.4134/BKMS.2010.47.1.001