References
- R. P. Agarwal, Difference Equations and Inequalities, Theory, methods, and applications. Second edition. Monographs and Textbooks in Pure and Applied Mathematics, 228. Marcel Dekker, Inc., New York, 2000
- F. Brauer, Asymptotic equivalence and asymptotic behaviour of linear systems, Michigan Math. J. 9 (1962), 33-43 https://doi.org/10.1307/mmj/1028998618
- S. K. Choi and N. J. Koo, Asymptotic equivalence between two linear Volterra difference systems, Comput. Math. Appl. 47 (2004), no. 2-3, 461-471 https://doi.org/10.1016/S0898-1221(04)90038-7
- S. K. Choi, N. J. Koo, and Y. H. Goo, Asymptotic property of nonlinear Volterra difference systems, Nonlinear Anal. 51 (2002), no. 2, Ser. A: Theory Methods, 321-337 https://doi.org/10.1016/S0362-546X(01)00833-1
- S. K. Choi, N. J. Koo, and H. S. Ryu, Asymptotic equivalence between two difference systems, Advances in difference equations, IV., Comput. Math. Appl. 45 (2003), no. 6-9, 1327-1337 https://doi.org/10.1016/S0898-1221(03)00106-8
- C. Cuevas and M. Pinto, Asymptotic behavior in Volterra difference systems with un-bounded delay, Fixed point theory with applications in nonlinear analysis, J. Comput. Appl. Math. 113 (2000), no. 1-2, 217-225 https://doi.org/10.1016/S0377-0427(99)00257-5
- S. Elaydi, Periodicity and stability of linear Volterra difference systems, J. Math. Anal. Appl. 181 (1994), no. 2, 483-492 https://doi.org/10.1006/jmaa.1994.1037
- V. Lakshmikantham and D. Trigiante, Theory of difference equations, Numerical methods and applications. Mathematics in Science and Engineering, 181. Academic Press, Inc., Boston, MA, 1988
- M. Medina, Asymptotic properties of solutions of nonlinear difference equations, J. Comput. Appl. Math. 70 (1996), no. 1, 57-66 https://doi.org/10.1016/0377-0427(95)00139-5
- R. Medina and M. Pinto, Asymptotic equivalence and asymptotic behavior of difference systems, Commun. Appl. Anal. 1 (1997), no. 4, 511-523
- W. F. Trench, Linear asymptotic equilibrium and uniform, exponential, and strict stability of linear difference systems, Advances in difference equations, II. Comput. Math. Appl. 36 (1998), no. 10-12, 261-267 https://doi.org/10.1016/S0898-1221(98)80027-8
- M. Zouyousefain and S. Leela, Stability results for difference equations of Volterra type, Appl. Math. Comput. 36 (1990), no. 1, part I, 51-61 https://doi.org/10.1016/0096-3003(90)90074-D
Cited by
- h-STABILITY OF THE NONLINEAR PERTURBED DIFFERENCE SYSTEMS VIA n∞-SIMILARITY vol.31, pp.1_2, 2013, https://doi.org/10.14317/jami.2013.277
- Necessary first and second order optimality conditions in a discrete optimal control problem vol.47, pp.1, 2013, https://doi.org/10.3103/S0146411613010021