Minimum Fuzzy Membership Function Extraction for Automatic Premature Ventricular Contraction Detection

자동 조기심실수축 탐지를 위한 최소 퍼지소속함수의 추출

  • 임준식 (경원대학교 전자거래학부)
  • Published : 2007.02.28

Abstract

This paper presents an approach to detect premature ventricular contractions(PVC) using the neural network with weighted fuzzy membership functions(NEWFM), NEWFM classifies normal and PVC beats by the trained weighted fuzzy membership functions using wavelet transformed coefficients extracted from the MIT-BIH PVC database. The eight most important coefficients of d3 and d4 are selected by the non-overlap area distribution measurement method. The selected 8 coefficients are used for 3 data sets showing reliable accuracy rates 99,80%, 99,21%, and 98.78%, respectively, which means the selected input features are less dependent to the data sets. The ECG signal segments and fuzzy membership functions of the 8 coefficients enable input features to interpret explicitly.

본 논문은 가중 퍼지소속함수 기반 신경망(neural network with weighted fuzzy membership functions, NEWFM)을 이용하여 심전도(ECG) 신호로부터 조기심실수축(premature vedtricular contractions, PVC)을 자동 탐지하는 방안을 제시하고 있다. NEWFM은 MIT-BIH 데이터베이스의 부정맥 심전도를 웨이블릿 변환(wavelet transform, WT)한 계수로부터 학습하여 정상 파형과 PVC 파형을 구분한다. 비중복면적 분산 측정법을 적용하여 중요도가 가장 높은 웨이블릿 변환의 d3과 d4의 8개 계수를 추출하였다. 이들 특징입력을 3개의 실험군에 사용하여 각각 99.80%, 99.21%, 98.78%의 신뢰성 있는 전체분류율을 나타내었고, 이는 각 실험군에 대한 특징입력의 종속성이 적음을 보여준다. 추출된 8개 계수의 ECG 신호 구간과 퍼지소속함수를 제시함으로써 특징입력에 대한 명시적인 해석을 가능하게 하였다.

Keywords