DOI QR코드

DOI QR Code

Detoxification Effect of Microcluster-Water on Bromobenzene-Induced Liver Damaged Mice

Bromobenzene으로 유도된 간 손상 마우스에 대한 Microcluster수의 효과

  • Park, Bum-Ho (Dept. of Food Science and Technology, Food Industrial Technology, Catholic University of Daegu) ;
  • Back, Kyung-Yern (Dept. of Food Science and Technology, Food Industrial Technology, Catholic University of Daegu) ;
  • Lee, Sang-Il (Dept. of Food Nutrition and Culinary, Keimyung College) ;
  • Kim, Soon-Dong (Dept. of Food Science and Technology, Food Industrial Technology, Catholic University of Daegu)
  • 박범호 (대구가톨릭대학교 식품산업학부 식품공학) ;
  • 백경연 (대구가톨릭대학교 식품산업학부 식품공학) ;
  • 이상일 (계명문화대학 식품영양조리과) ;
  • 김순동 (대구가톨릭대학교 식품산업학부 식품공학)
  • Published : 2007.03.31

Abstract

This study was conducted to investigate the hepatic detoxification effect of microcluster-water (McW). Animal experiments were divided into 4 groups: distilled water intake group (DC), distilled water intake-bromobenzene treated group (DB), McW intake group (MC), and McW intake-bromobenzene treated group (MB). There were no significant differences in alanine aminotransferase and aspartate aminotransferase activities between DC and MC groups, but the activities in MB group were significantly (p<0.05) lower than those in DB group. No apparent changes of aniline hydrolase activity were shown in all experimental groups, while glutathione S-transferase activity in MC and MB groups was higher than that in DC and DB, respectively. The content of hepatic lipid peroxide in DC group was similar to that of MC group. In addition, the contents in DB and MB groups were significantly (p<0.05) increased than that of DC group. The increasing rate in MB group was lower than that of DB group. Also, the electron donating activity of McW was significantly (p<0.05) higher than that of distilled water. From these results, it could be suggested that McW has the possibility of having detoxification effect of bromobenzene induced hepatic injury by increasing glutathione S-transferase, which is known as a kind of hepatiic detoxification enzyme.

McW의 간 해독효과를 조사하였다. 실험군은 총 4개군 즉, 증류수급여군으로 대조군(DC)과 증류수를 3주간 섭취케 한 후 희생직전에 BB를 처리한 군(DB), McW 급여군으로는 McW 대조군(MC)과 McW를 3주간 섭취케 한 후 희생직전에 BB를 처리한 군(MB)의 4개 군으로 구분하였다. DC군과 MC군의 혈청 ALT 및 AST 활성은 뚜렷한 차이를 보이지 않았으나 MB군에서는 DB군에 비하여 유의하게 낮았다. 간 AH 활성은 모든 실험군에서 유의한 변동이 없었으나 GST 활성은 MC군이 DC군에 비하여, MB군이 DB군에 비하여 각각 높았다. 간 조직의 LPO 함량은 DC 및 MC군이 유사하였으며, DB 및 MB군 모두 DC군보다 유의하게 증가하였으나 그 증가율은 MB군이 DB군에 비하여 낮았다. McW의 전자공여능은 DW에 비하여 유의하게 높았다. 이상의 결과 McW는 간 해독효소의 일종인 GST의 활성을 증가시킴과 동시에 McW의 지속적인 섭취에 의한 항산화 작용에 의해 해독작용을 나타내는 것으로 생각되나 추후 계속적인 연구검토가 행해져야할 것이다.

Keywords

References

  1. Hwang SY. 2004. A study on the mineral water in Europe partial area. Kor J Sanitation 19: 76-81
  2. Kang SW. 1985. The water status in cell. Proceedings of The Botanical Soc. of Korea Conference, Workshop and Symposium on Plant and Water. The Botanical Soceity of Korea. p 51-57
  3. Kim TW. 1989. Mystery of Water. Hongikdang, Seoul. p 87-88
  4. Kwon SP. 1989. Water. Doserchulphan Gonbubang, Seoul. p 85-95
  5. Paek UH, Jeong ED, Yun CK. 2000. The characteristics of water quality of tap water and far-infrared rays mineral water. J Korean Envir Sci Soc 9: 423-428
  6. Yanagihara T, Arai K, Miyamae K, Sato B, Shudo T, Yamada M, Aoyama M. 2005. Electrolyzed hydrogen- saturated water for drinking use elicits an antioxidative effect: a feeding test with rats. Biosci Biotechnol Biochem 69: 1985-1987 https://doi.org/10.1271/bbb.69.1985
  7. 松下和弘. 1990. $^{17}O$-NMR 分光法による水の狀態評價. 月刊フ-ドケミカル 4: 42-46
  8. Mun SS. 2002. The new evaluation basis of potable water. J Korean Soc Gisulsa 35: 24-28
  9. Hodgson E. 1987. Metabolism of toxicants. In A Textbook of Modern Toxicology. Hodgson E, Levi PE, eds. Elservier Science Publishing Co., New York. p 51-84
  10. Monks TJ, Lau SS, Gillette JR. 1984. Diffusion of reactive metabolites out of hepatocytes: Studies with bromobenzene. J Pharmacol Exp Ther 228: 393-399
  11. Lee SI, Yoon CG, Huh K. 1990. Protective effect of diallyl disulfide on the bromoben zene-induced hepatotoxicity in mice. Kor J Pharmacol 26: 185-192
  12. Heijine WHM, Slitt AL, van Bladeren PJ, Groten JP, Klaassen CD, Stierum RH, van Ommen B. 2004. Boromobenzene-induced hapatotoxicity at the transcriptome level. Toxicol Sci 79: 411-422 https://doi.org/10.1093/toxsci/kfh128
  13. Colacci A, Arfellini G, Mazzullo M, Prodi G, Grilli S. 1986. The covalent binding of bromobenzene with nucleic acids. Toxicol Pathol 13: 276-282
  14. Bambal RB, Hanzlik RP. 1995. Bromobenzene 3,4-oxide alkylates histidine and lysine side chains of rat liver proteins in vivo. Chem Res Toxicol 8: 729-735 https://doi.org/10.1021/tx00047a013
  15. Koen YM, Williams TD, Hanzlik RP. 2000. Identification of three protein targets for reactive metabolites of bromobenzene in rat liver cytosol. Chem Res Toxicol 13: 1326- 1335 https://doi.org/10.1021/tx000165l
  16. Reid WD, Christie B, Krishna G, Mitchell JR, Moskowitz J, Brodie BB. 1971. Bormobenzene metabolism and hepatic necrosis. Pharmacology 6: 41-55 https://doi.org/10.1159/000136226
  17. Brodie BB, Reid WD, Cho AK, Sipes G, Krishna G, Gillette JR. 1971. Possible mechanism of liver necrosis caused by aromatic organic compounds. Proc Natl Acad Sci USA 68: 160-164 https://doi.org/10.1073/pnas.68.1.160
  18. Zannoni VG, Marker EK, Lau SS. 1982. Hepatic bromobenzene epoxidation and binding: prevention by ascorbyl palmitate. Drug Nutr Interact 1: 193-204
  19. Ricao AG, Burgat-Sacaze V. 1984. Toxicological significance of covalently-bound residues. Food Addit Contam 1: 157-161 https://doi.org/10.1080/02652038409385837
  20. Zheng J, Hanzlik RP. 1991. Premercapturic acid metabolites of bromobenzene derived via its 2,3- and 3,4-oxide metabolites. Xenobiotica 24: 535-546 https://doi.org/10.3109/00498259409043256
  21. Zampaglion N, Jollow DJ, Mitchell JR, Hamridk M, Gillette JR. 1973. Role of detoxifying enzymes in bromobenzene-induced liver necrosis. J Pharmacol Exp Ther 187: 218-227
  22. Bidlack WR, Lowery GL. 1982. Multiple drug metabolism: p-nitroanisole reversal of acetone enhanced aniline hydroxylation. Biochem Pharmacol 31: 311-317 https://doi.org/10.1016/0006-2952(82)90176-9
  23. Habig WH, Pabst MJ, Fleischner G, Gatmaitan F, Aris IM, Jacoby WB. 1974. The identification of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc Natl Acad Sci USA 71: 3879-3882 https://doi.org/10.1073/pnas.71.10.3879
  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RL. 1951. Protein measurement Folin phenol reagent. J Biol Chem 193: 265-275
  25. Ellman GL. 1959. Tissue sulfhydryl group. Arch Biochem Biophys 82: 70-77 https://doi.org/10.1016/0003-9861(59)90090-6
  26. Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 248-254 https://doi.org/10.1016/0003-2697(79)90738-3
  27. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 26: 1199-2000 https://doi.org/10.1038/1811199a0
  28. Martin JP, Dailey M, Sugarman E. 1987. Negative and positive assays of superoxide dismutase based on hematoxylin autoxidation. Arch Biochem Biophys 255: 329-336 https://doi.org/10.1016/0003-9861(87)90400-0
  29. Casini AF, Pompella A, Comporti M. 1984. Glutathione depletion, lipid peroxidation, and liver necrosis following bromobenzene and iodobenzene intoxication. Toxicol Pathol 12: 295-299 https://doi.org/10.1177/019262338401200315
  30. Wang RS, Nakajima T, Honma T. 1999. Different change patterns of the isozymes of cytochrome P450 and glutathione S-transferases in chemically induced liver damage in rat. Ind Health 37: 440-448 https://doi.org/10.2486/indhealth.37.440
  31. Cotran RS, Kurma V, Collin T. 1999. Cellular pathology I. In Robbins Pathologic Basis of Diseases. 6th ed. WB Saunders, Philadelphia. p 1-29
  32. Peng RX, Lei SB, Gao P. 1990. The capacity of drug metabolism in Chinese fetal livers: II. Metabolism of ethylmorphine, aminopyrine and aniline. Asian Pac J Pharmacol 5: 13-18
  33. Pramyothin P, Janthasoot W, Pongnimitprasert N, Phukuudom S, Ruangrungsi N. 2004. Hepathotoxic effect of (+)usnic acid from Usnea siamensis Wainio in rats, isolated rat hepatocytes and isolated rat liver mitochondria. J Ethnopharmacol 90: 381-387 https://doi.org/10.1016/j.jep.2003.10.019
  34. Zanelli U, Longo V, Paolicchi A, Gervasi PG. 2000. Stabilization of cytochrome P4502E1 protein by ethanol in primary hamster hepatoicyte cultures. Toxicol In Vitro 14: 69-77 https://doi.org/10.1016/S0887-2333(99)00085-5
  35. Park JC, Kim SC, Hur JM, Choi SH, Lee KY, Choi JW. 2004. Anti-hepatotoxic effects of Rosa rugosa root and its compound, rosamultin, in rats intoxicated with bromobenzene. J Med Food 7: 436-441 https://doi.org/10.1089/jmf.2004.7.436
  36. Jakoby WB. 1978. The glutathione S-transferases: a group of multifunctional detoxification proteins. Adv Enzymol Relat Areas Mol Biol 46: 383-414 https://doi.org/10.1002/9780470122914.ch6
  37. Litwack G, Ketterer B, Aris IM. 1971. Ligandin: a hepatic protein which binds steroids, bilirubin, carcinogens, and a number of exogenous anions. Nature 234: 466-467 https://doi.org/10.1038/234466a0
  38. Casini AF, Ferrali M, Pompella A, Maellaro E, Comporti M. 1986. Lipid peroxidation and cellular damage in extrahepatic tissues of bromobenzene-intoxicated mice. Am J Pathol 123: 520-531