DOI QR코드

DOI QR Code

Ti0.96Co0.02Fe0.02O2의 자기적 특성

Magnetic Properties of Ti0.96Co0.02Fe0.02O2

  • Kim, E.C. (Department of Physics, Yeungnam University) ;
  • Lee, S.R. (Department of Physics, Yeungnam University) ;
  • Kim, S.J. (Department of Physics, Yeungnam University) ;
  • Han, G.H. (Department of Physics, Yeungnam University)
  • 발행 : 2007.02.28

초록

[ $Ti_{0.96}Co_{0.02}Fe_{0.02}O_2$ ]의 자기적 특성을 알아보기 위해 온도와 Ti-getter를 변화시켜 XRD(X-ray Diffraction)와 VSM(Vibrating Sample Magnetometer)을 이용하여 실험하였다. 실험은 먼저 Host 물질로 $TiO_2$를 사용하고 여기에 두 가지 전이 금속인 Fe와 Co를 첨가하여 직접합성법(solid state reaction)으로 시료를 제작하였다. $Ti_{0.96}Co_{0.02}Fe_{0.02}O_2$의 결정학적 구조를 알기 위해 XRD 측정을 해 본 결과 tetragonal구조의 순수 rutile 상을 보였다. 또한 온도에 무관하게 Ti-getter를 넣은 시료는 Fe 2차상이 동일하게 나왔으며 , Ti-getter를 넣지 않은 시료는 $Fe_2TiO_5$가 검출 되었다. 그리고 VSM(Vibrating Sample Magnetometer)을 이용하여 자기적 특성을 측정하였다. 상온에서 자기이력곡선(M-H)는 강자성을 보이며, 0.8T에서 CoFe 원자당 자기 모멘트는 약 $1.3{\mu}_B/CoFe$가 측정 되었다. 그러나 Ti-getter를 넣지 않고 실험한 시료에서는 약 $0.02{\mu}_B/CoFe$가 측정 되었다.

The samples were synthesized by using a solid state reaction. The X-ray diffraction pattern for $Ti_{0.96}Co_{0.02}Fe_{0.02}O_2$ showed a pure rutile phase with tetragonal structures. Mixtures of the proper proportions of the elements sealed in evacuated quartz ampoule were heated at $870{\sim}930^{\circ}C$ for one day and then slowly cooled down to room temperature at a rate of $10^{\circ}C/h$. In order to obtain single phase material, it was necessary to grind the sample after the first firing and to press the powders into pellets before annealing them for a second time in evacuated and sealed quartz ampoule. Magnetic properties have been investigated using the vibrating sample magnetometer(VSM). Room temperature magnetic hysteresis(M-H) curve showed an obvious ferromagnetic behavior and the magnetic moment per Fe atom under the applied of 0.8T was estimated to be about $1.3{\mu}_B/CoFe$. But the magnetic moment per Fe atom under the applied of 0.8T was estimated to be about $0.02{\mu}_B/CoFe$ without Ti-getter.

키워드

참고문헌

  1. H. Akai, Phys. Rev. Lett., 81, 3002 (1998) https://doi.org/10.1103/PhysRevLett.81.3002
  2. H. Ohno, Science, 281, 951 (1998) https://doi.org/10.1126/science.281.5379.951
  3. F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B, 57, R2037 (1998) https://doi.org/10.1103/PhysRevB.57.R2037
  4. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science, 287, 1019 (2000) https://doi.org/10.1126/science.287.5455.1019
  5. M. E. Overberg, C. R. Abernathy, S. J. Pearton, N. A. Theodoropoulou, K. T. McCarthy, and A. F. Hebard, Appl. Phys. Lett., 79, 1312 (2001) https://doi.org/10.1063/1.1397763
  6. Y. Matsumoto, M. Murakami, T. Shono, T. Hasagawa, T.Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science, 291, 854 (2001) https://doi.org/10.1126/science.1056186
  7. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science, 294, 1488 (2001) https://doi.org/10.1126/science.1065389
  8. S. A. Chambers, S. Thevuthasan, R. F. C. Farrow. R. F. Marks, J. U.Thiele, L. Folks, M. G. Samant, A. J. Kellock, N. Ruzycki, D. L.Ederer, and U. Diebold, Appl. Phy. Lett., 79, 3467 (2001) https://doi.org/10.1063/1.1420434
  9. S. A. Chambers, T. Droubay, C. M. Wang, A. S. Lea, R. F. C. Farrow, L. Folks, V. Deline, and S. Anders, Appl. Phys. Lett., 82, 1257 (2003) https://doi.org/10.1063/1.1556173
  10. W. K. Park, Ricardo J. Ortega-Hertogs, Jagadeesh S. Moodera, Alex Punnoose, and M. S. Seehra, J. Appl. Phys., 91, 8093 (2002)