Abstract
Associating the shoulder line with head location of the human body is useful in verifying, localizing and tracking persons in an image. Since the head line and the shoulder line, what we call ${\Omega}$-shape, move together in a consistent way within a limited range of deformation, we can build a statistical shape model using Active Shape Model (ASM). However, when the conventional ASM is applied to ${\Omega}$-shape fitting, it is very sensitive to background edges and clutter because it relies only on the local edge or gradient. Even though appearance is a good alternative feature for matching the target object to image, it is difficult to learn the appearance of the ${\Omega}$-shape because of the significant difference between people's skin, hair and clothes, and because appearance does not remain the same throughout the entire video. Therefore, instead of teaming appearance or updating appearance as it changes, we model the discriminative appearance where each pixel is classified into head, torso and background classes, and update the classifier to obtain the appropriate discriminative appearance in the current frame. Accordingly, we make use of two features in fitting ${\Omega}$-shape, edge gradient which is used for localization, and discriminative appearance which contributes to stability of the tracker. The simulation results show that the proposed method is very robust to pose change, occlusion, and illumination change in tracking the head and shoulder line of people. Another advantage is that the proposed method operates in real time.
영상에서 사람의 머리위치를 찾는 문제에 있어서 어깨선 정보를 이용하는 것은 아주 유용하다. 영상에서 머리 외곽선과 어깨선의 형태는 일정한 변형을 유지하면서 같이 움직이므로 이를 ASM(Active Shape Model) 기법을 사용해서 통계적으로 모델링 할 수 있다. 그러나 ASM 모델은 국부적인 에지나 그래디언트에 의존하므로 배경 에지나 클러터 성분에 민감하다. 한편 AAM(Active Appearance Model) 모델은 텍스쳐 등을 이용하지만, 사람의 피부색, 머리색깔, 옷 색깔 등의 차이로 인해서 통계적인 학습방법을 쓰기가 어렵고, 전체 비디오에서 외모(Appearance)가 시간적으로 변한다. 따라서, 본 논문에서는 외모(Apperance) 모델을 변화에 따라 바꾸는 대신, 영상의 각 화소를 머리, 어깨, 배경으로 구분하는 분별적 외모 모델(discriminative appearance)를 사용한다. 실험을 통해서 제안된 방법이 기존의 기법에 비해서 포즈변화와 가려짐, 조명의 변화 등에 강인함을 보여준다. 또한 제안된 기법은 실시간으로 작동하는 장점 또한 가진다.