DOI QR코드

DOI QR Code

1,3-Dichloro-2-Propanol (1,3-DCP) Induced Cell Damage

1,3-Dichloro-2-Propanol (1,3-DCP)에 의한 세포의 손상기전

  • Jeong, Ji-Hak (Department of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Sin, Ik-Jae (Department of Nanomedical Engineering, College of Nano Science and Technology, Pusan National University) ;
  • Sin, Yeong-Min (Center for Food & Drug Analysis., Busan Regional Food & Drug Administration) ;
  • Park, Heung-Jai (School of Environmental Science & Engineering/Institute of Life Environment, Inje University) ;
  • An, Won-Gun (Department of Nanomedical Engineering, College of Nano Science and Technology, Pusan National University)
  • 정지학 (경북대학교 생물학과) ;
  • 신익재 (부산대학교 나노과학기술대학 나노메디컬공학과) ;
  • 신영민 (부산지방식품의약품안전청 시험분석센터) ;
  • 박흥재 (인제대학교 환경공학부/인제대학교 생명환경연구소) ;
  • 안원근 (부산대학교 나노과학기술대학 나노메디컬공학과)
  • Published : 2007.02.28

Abstract

Endocrine disrupting compounds (EDC's) are chemicals that either mimic endogenous hormones interfering with pharmacokinetics or act by other mechanisms. Some endocrine disrupters were reported to be chemical substances that cause apoptosis in cells. A number of reports have indicated that 1,3-DCP, one of the EDC's may act as an endocrine disrupter and also has possible carcinogenic effects. 1,3-DCP, present in commercial protein hydrolysates used for human nutrition, are genotoxic and 1,3-dichloro-2-propanol induced tumors in rats. In the present study, it was investigated whether 1,3-DCP induces ROS generation and apotosis in A549 adenocarcinoma cells. Here we show that 1,3-DCP inhibits the growth of lung cancer cell lines and generates reactive oxygen species (ROS), a major cause of DNA damage and genetic instability, It was investigated that 1,3-DCP increases G1 phase cells after 12 hours, thereafter abruptly draws A549 cells to G0 state after 24 hours by flow cytometric analysis. 1,3-DCP induces p53 and $p21^{Cip1/WAF1}$ activation time- and dose-dependently by 24 hours, while the level $p21^{Cip1/WAF1}$ was decreased after 48 hours. These results suggest that 1,3-DCP, an EDC's generates ROS and regulates genes involved with cell cycle and apoptosis.

Keywords

References

  1. Budavari, S., 1989, The Merck index, Merck, Rahway, 3058pp
  2. L'Huillier, N., M. K. Pratten and R. H. Clothier, 2002, The relative embryotoxicity of 1,3-dichloro-2-propanol on primary chick embryonic cells. Toxicol In Vitro., 16(4), 433442 https://doi.org/10.1016/S0887-2333(02)00032-2
  3. Talcott, R. E. and J. King, 1984, Mutagenic impurities in 1,3-dichloropropene preparations. J. Natl. Cancer Inst., 72(5), 1113-1116
  4. Piasecki, A:., A. Ruge and H. Marquardt, 1990, Malignant transformation of mouse M2fibroblasts by glycerol chlorohydrines contained in protein hydrolysates and commercial food, Arzneirnittelforschung, 40(9), 10541055
  5. Shiozaki, T., Y. Mizobata, H. Sugimoto, T. Yoshioka and T. Sugimoto, 1994, Fulminant hepatitis following exposure to dichlorohydrin-report of two cases, Hum. Exp, ToxicoI., 13(4), 267-270 https://doi.org/10.1177/096032719401300408
  6. Hahn, H., E. Eder and C. Deininger, 1991, Genotoxicity of 1,3-dichloro-2-propanol in the SOS chromotest and in the Ames test. Elucidation of the genotoxic mechanism, Chern. BioI. Interact., 80(1), 73-88 https://doi.org/10.1016/0009-2797(91)90032-3
  7. Omura, M., M. Hirata, M. Zhao, A. Tanaka and N. Inoue, 1995, Comparative testicular toxicities of two isomers of dichloropropanol, 2,3-dichloro-l-propanol, and 1,3-dichloro-2propanol, and their metabolites alpha-chlorohydrin and epichlorohydrin, and the potent testicular toxicant 1,2-dibromo-3-chloropropane. Bull. Environ. Contam. Toxicol., 55(1), 1-7 https://doi.org/10.1007/BF00212381
  8. Katoh, T., J Haratake, S. Nakano, M. Kikuchi, M. Yoshikawa and K. Arashidani, 1998, Dosedependent effects of dichloropropanol on liver histology and lipid peroxidation in rats. Ind. Health, 36(4), 318-323 https://doi.org/10.2486/indhealth.36.318
  9. Ellis, R. E., J. Y. Yuan and H. R. Horvitz, 1991, Mechanisms and functions of cell death. Annu. Rev. Cell BioI., 7, 663-698 https://doi.org/10.1146/annurev.cb.07.110191.003311
  10. Shimizu, T., C.X., Cao, RG. Shao and Y. Pommier, 1998, Larnin B phosphorylation by protein kinase calpha and proteolysis during apoptosis in human leukemia HL60 cells. J BioI. Chern., 273(5), 8669-8674 https://doi.org/10.1074/jbc.273.15.8669
  11. Green, D. and G. Kroemer, 1998, The central executioners of apoptosis: caspases or mitochondria? Trends Cell BioI., 8(7), 267-271 https://doi.org/10.1016/S0962-8924(98)01273-2
  12. Liu, X. M., J. Z. Shao, L. X. Xiang and X. Y. Chen, 2006, Cytotoxic effects and apoptosis induction of atrazine in a grass carp (Ctenopharyngodon idellus) cell line. Environ. Toxicol., 21(1), 80-89 https://doi.org/10.1002/tox.20159
  13. Chen, T. J, J Y. Jeng, C. W. Lin, C. Y. Wu and Y. C. Chen, 2006, Quercetin inhibition of ROS-dependent and -independent apoptosis in rat glioma C6 cells, Toxicology, 223(1-2), 113-126 https://doi.org/10.1016/j.tox.2006.02.021
  14. Martirosyan, A., S. Leonard, X. Shi, B. Griffith, P. Gannett and J Strobl, 2006, Actions of a histone deacetylase inhibitor NSC3852 (5-nitroso-8-quinolinoI) link reactive oxygen species to cell differentiation and apoptosis in MCF-7 human mammary tumor cells, J Pharmacal. Exp. Ther., 317(2), 546-552 https://doi.org/10.1124/jpet.105.096891
  15. Pathak, N. and S. Khandelwal, 2006, Oxidative stress and apoptotic changes in murine splenocytes exposed to cadmium. Toxicology, 220(1), 26-36 https://doi.org/10.1016/j.tox.2005.11.027
  16. Bargonetti, J and J. J. Manfredi, Multiple roles of the tumor suppressor p.53, Curro Opin, Oncol., 14(1), 86-91
  17. Choisy-Rossi, C., P. Reisdorf and E. YonishRouach, 1998, Mechanisms of p.53- induced apoptosis: in search of genes which are regulated during p.53-mediated cell death. Toxicol. Lett., 102-103, 491-496
  18. Hansen, R. and M. Oren, 1997, p.53: from inductive signal to cellular effect. Curro Opin. Genet. Dev., 7(1), 46-51 https://doi.org/10.1016/S0959-437X(97)80108-6
  19. Blagosklonny, M. V., 2002, P53: an ubiquitous target of anticancer drugs. Int. J. Cancer, 98(2), 161-166 https://doi.org/10.1002/ijc.10158
  20. Romano, M. F., R. Avellino, A. Petrella, R. Bisogni, S. Romano and S. Venuta, 2004, Rapamycin inhibits doxorubicin-induced NFkappaB/Rel nuclear activity and enhances the apoptosis of melanoma cells, Eur. J. Cancer, 40(18), 2829-2836 https://doi.org/10.1016/j.ejca.2004.08.017
  21. Soengas, M. S., R. M. Alarcon, H. Yoshida, A. J. Giaccia, R. Hakem, T. W. Mak and S. W. Lowe, 1999, Apaf-1 and caspase-9 in p.53- dependent apoptosis and tumor inhibition. Science, 284(5411), 156-159 https://doi.org/10.1126/science.284.5411.156
  22. Gao, C. and N. Tsuchida, 1999, Activation of caspases in p.53-induced transactivation-independent apoptosis. Jpn. J. Cancer Res., 90(2), 180-187 https://doi.org/10.1111/j.1349-7006.1999.tb00731.x
  23. Fisher, D. E., 1994, Apoptosis in cancer therapy: crossing the threshold. Cell, 78(4), 539542 https://doi.org/10.1016/0092-8674(94)90518-5
  24. Wang, S. and W. S. El-Deiry, 2004, The p.53 pathway: targets for the development of novel cancer therapeutics. Cancer Treat. Res., 119, 175-187 https://doi.org/10.1007/1-4020-7847-1_9
  25. Roninson, I. B., 2002, Oncogenic functions of tumour suppressor p.2(Wafl/Cipl/ Sdil): association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett., 179(1), 1-14 https://doi.org/10.1016/S0304-3835(01)00847-3
  26. Dumont, P., M. Burton, Q. M. Chen, E. S. Gonos, C. Frippiat, J.B. Mazarati, F. Eliaers, J. Remade and O. Toussaint, 2000, Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic. Biol. Med., 28(3), 361-373 https://doi.org/10.1016/S0891-5849(99)00249-X
  27. Morisaki, H., A. Ando, Y. Nagata, O. PereiraSmith, J.R. Smith, K Ikeda and M. Nakanishi, 1999, Complex mechanisms underlying impaired activation of Cdk4 and Cdk2 in replicative senescence: roles of p16, p21, and cydin D1. Exp. Cell Res., 253(2), 503-510 https://doi.org/10.1006/excr.1999.4698
  28. Hattangadi, D. K, G. A. DeMasters, T. D. Walker, K R. Jones, X. Di, IF. Newsham and D. A. Gewirtz, 2004, Influence of p.53 and caspase 3 activity on cell death and senescence in response to methotrexate in the breast tumor cell. Biochem. Pharmacol., 68(9), 1699-1708 https://doi.org/10.1016/j.bcp.2004.06.033
  29. Choisy-Rossi, C., P. Reisdorf and E. YonishRouach, 1998, Mechanisms of p.53- induced apoptosis: in search of genes which are regulated during p.53-meeliated cell death. Toxico.l Lett., 102-103, 491-496
  30. el-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K.W. Kinzler and B. Vogelstein, 1993, WAFl, a potential mediator of p.53 tumor suppression. Cell, 75(4), 817-825 https://doi.org/10.1016/0092-8674(93)90500-P