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GENERALIZED MULTIVALUED QUASIVARIATIONAL
INCLUSIONS FOR FUZZY MAPPINGS

ZEQING Liu*, JEONG SHEOK UME** AND SHIN MIN KANG™™

ABSTRACT. In this paper, we introduce and study a class of generalized multivalued
quasivariational inclusions for fuzzy mappings, and establish its equivalence with a
class of fuzzy fixed-point problems by using the resolvent operator technique. We
suggest a new iterative algorithm for the generalized multivalued quasivariational
inclusions. Further, we establish a few existence results of solutions for the gen-
eralized multivalued quasivariational inclusions involving Fr-relaxed Lipschitz and

Fr-strongly monotone mappings, and discuss the convergence criteria for the algo-
rithm.

1. INTRODUCTION

Variational inequality theory plays an important and fundamental role in pure
and applied science. In recent years, classical variational inequality problem has been
extended to study a wide class of problems arising in mechanics, physics, optimiza-
tion and control, nonlinear programming, economics, finance, regional, structural,
transportation, elasticity and applied sciences, etc., see [1], [3], [6]-[10] and the ref-
erences therein. In 1998, Verma [9]considered the existence of solutions for a class
of generalized variational inequalities involving relaxed Lipschitz mappings.

In 1989, Chang and Zhu [3] first introduced a class of variational inequalities for
fuzzy mappings. In 1993, by using the projection technique, Noor [6] suggested an
iterative scheme for finding the approximate solutions for a variational inequality
for fuzzy mappings and proved that this approximate solution converges strongly
to the exact solution for his problem. Afterwards, Al-Said [1] and Noor [7], [8]
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and others have introduced and studied a few classes of variational inequalities and
quasi-variational inequalities for fuzzy mappings.

In this paper, we introduce and study a class of generalized multivalued quasivari-
ational inclusion for fuzzy mappings, which include the variational inequalities and
quasi-variational inequalities for fuzzy mappings in [1], [6]-[10] as special cases. Us-
ing the resolvent operator technique for maximal monotone mapping, we prove that
the generalized multivalued quasivariational inclusions for fuzzy mappings are equiv-
alent to the fuzzy fixed-point problems. We suggest a general and unified algorithm
for the generalized multivalued quasivariational inclusions. Further we establish a
few existence results of solutions for the generalized multivalued quasivariational
inclusions involving Fy-relaxed Lipschitz and F,.-strongly monotone mappings, and
discuss the convergence criteria for the algorithm. Our results are the extension and
improvements of the earlier and recent results in this field.

2. PRELIMINARIES

Let H be a real Hilbert space with norm || - || and inner product (,-). We denote
the collection of all fuzzy sets on H by F(H) = {a : H — [0,1]}. Let I be the
identity mapping on H, A € F(H) and r € (0,1]. The r-level set of A, denoted
(A),, is defined by (A), = {zx € H : Az > r}. Let F,(H) = {A € F(H) : (A), is
a bounded closed subset of H}. A mapping T from H into F(H) is called a fuzzy
mapping.

Definition 2.1 ([2]). If A: H — 2F is a maximal monotone mapping, then the
resolvent operator associated with A is defined by

Ja(u) = (I + pA)~Y(u) forall uc H,
where p > 0 is a constant.

It is well known that the subdifferential of a proper lower semicontinuous convex

function is maximal monotone.
Definition 2.2. A fuzzy mapping T : H — F,(H) is said to be F,.-Lipschitz
continuous if there exists a constant ¢ > 0 such that for each =,y € H,

H((Tz)r, (Ty)r) < t|lz -yl

where H(-,-) denotes the Hausdorff metric on the family of nonempty bounded closed
subsets of H.
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Definition 2.3. A mapping g : H — H is said to be Lipschitz continuous and
strongly monotone if there exist constants t > 0 and s > 0 such that for all z,y € H,

lgz ~ gyll < tllz ~ |l and (gz — gy, & —y) > sllz - y|I?,
respectively.

Definition 2.4. A mapping N : H x H — H is said to be Lipschitz continuous
with respect to the first argument if there exists a constant £ > 0 such that for all
T,y,z € H,

[N(z,2) = N(y, 2)|| < tllz -yl

Similarly we can define the Lipschitz continuity of the mapping N with respect to
the second argument.

Definition 2.5. A fuzzy mapping T : H — F(H) is said to be

(i) Fy,-relazed Lipschitz with respect to the first argument of N : H x H — H,
if there exists a constant ¢ > 0 such that for all u,v,w € H, z € (Tu),,
y € (Tv),,

(N(z,w) = N(y,w),u —v) < —tllu— ol

(if) Er-strongly monotone with respect to the second argument of N: H x H —
H, if there exists a constant ¢ > 0 such that for all u,v,w € H, z € (Tu),,
y € (Tv)r,

(N(w,z) — N(w,y),u —v) > tlu— |

Lemma 2.1 ([4]). Let A : H — 2 be o mazimal monotone mapping. Then the

resolvent operator J4 is singlevalued and nonexpansive.

Let M : Hx H — H, g,h: H— H be mappings, 4,B,C,D : H — F(H) be
fuzzy mappings and W : H x H — 27 be a multivalued mapping such that for each
y € H, W(,y) : H— 2" is a maximal monotone mapping. For given f € H, we
consider the following problem:

Find v € H, z € (Au),, y € (Bu)y, z € (Cu)y, w € (Du), such that gu — hw €
dom(W (-,2)) and

(2.1) f€gu— M(x,y) + W(gu — hw, 2),

which is called the generalized multivalued quasivariational inclusion for fuzzy map-
pings.
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IfC =1, W(z,y) = W(z) for all 2,y € H, where W : H — 2f is a maximal
monotone mapping, then problem (2.1) is equivalent to finding u € H, = € (Au),,
y € (Bu)r, w € (Du), such that gu — hw € dom(W) and

(2.2) fegu— M(z,y) + W(gu — hw),

which appears to be a new one.

Let ¢ : Hx H — RU{+00} be such that for each y € H, ¢(-,y) : H — RU{+0o0}
is a proper lower semicontinuous convex function on H and 9¢(-,y) denote the
subdifferential of function ¢(-,y). Let K(u) be a closed convex subset of H, Ix,)
denote the indicator function of K'(u), Pk(y) be the projection of H onto K(u) for
any u € H.

Incase f =h=0,C =D =1 W(z,y) = 0(z,y), M(z,y) = gz — y for all
z,y € H, where ¢(z,y) = Ig(y) (), then problem (2,1) collapses to finding u € H,
z € (Au),, y € (Bu), such that gu € K(u) and

(2.3) (gu — (gz — y),v — gu) > 0 for all v € K(u),

which is called the generalized quasi-variational inequality for fuzzy mappings stud-
ied by Al-Said [1].

ff=h=0,A=D=g=1, W =298¢, M(z,y) =z —y for all x,y € H, where
¢ : H — RU {+00} is a proper lower semicontinuous convex function on H and 8¢
denotes the subdifferential of function ¢, then problem (2.2) is equivalent to finding
u € H, y € (Bu), such that

(2.4) (y,v — u) > ¢(u) ~ ¢(v) forallve H,

which is called the mixed variational inequality for fuzzy mappings introduced and
studied by Noor [8].

Iff=h=0,B=D=g=1 W =2098¢, ¢(z) = Ix(z), M(z,y) = z — y for all
z,y € H, where K is a closed convex subset of H, then problem (2.2) is equivalent
to finding v € K, x € (Au), such that

(2.5) (z,v—u) >0 forallve K,

which is known as the variational inequality for fuzzy mappings introduced and
studied by Noor [6], [7].

For appropriate and suitable choice of the mappings g,h, A, B,C, D, M, W and
the element f, one can obtain a few new and known classes of variational inequalities
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and quasi-variational inequalities for fuzzy mappings from problem (2.1) as special
cases.

3. MAIN RESULTS
Lemma 3.1. Let t and p be positive parameters. Then the following conditions are

equivalent.

(a) the generalized multivalued quasivariational inclusion for fuzzy mappings
(2.1) has a solution u € H, x € (Au),, y € (Bu),, z € (Cu)r, w € (Du),
with gu — hw € dom(W (-, z));
(b) there ezist u € H, x € (Au)r, y € (Bu)y, z € (Cu),, w € (Du), satisfying
gu = hw + Jy (. ;)((1 = p)gu — hw + pM(z,y) + pf);
(c) the mapping F : H — 28 defined by
Fs= U:cE(As)r,yG(Bs)r,ze(Cs)r,wE(Ds)r{(1 - t)S + t[s —gs+ hw
+ Jw(,)((1 = p)gs — hw + pM (z,y) + p)} foralse H
has o fixed point u € H.
Proof. (a)<(b). It follows from Definition 2.1 and Lemma 2.1 that
f € gu— M(T’y) + W(gu - h‘waz)
& (1 - p)gu — hw + pM(x,y) + pf € gu — hw + pW(gu — hw, z)
& gu = hw + Jw( 5 ((1 - p)gu — hw + pM(z,y) + pf).
(b)e(c). It is easy to see that u € H is a fixed point of F' if and only if there
exist u € H, z € (Au),, y € (Bu)p, z € (Cu)p, w € (Du), satisfying
u=(1-t)u+tlu— gu+ hw+ Jw( (1 - p)gu — hw + pM(z,y) + pf)].
Notice that ¢ > 0. Hence the above equation is equivalent to gu = hw + JW(.,Z)((I —
p)gu — hw + pM(z,y) + pf). This completes the proof. O
Remark 3.1. Lemma 3.1 extends Lemma 3.1 in [1], [7], [8] and Lemma 3.2 in [6],

[9]. Lemma 3.1 is very important from the numerical and approximation point of
views. Based on Lemma 3.1 and Nadler’s result, we suggest the following general

and unified algorithm for generalized multivalued quasivariational inclusion for fuzzy
mappings (2.1).
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Algorithm 3.1. Let gh: H - H M :HxH — H, A B,C,D: H— F,(H) and
f € H. For given up € H, 2o € (Aug)r, yo € (Bug)r, 20 € (Cug)r, wo € (Dug)r,
compute {Un }n>0, {Tn}n>0, {Un}n>0, {Zn}n>0, {Wn}n>o from the iterative schemes

Unt+1 = (1 = )y + tlun — gy + hwn + Jw(. 2,y (1 = p)gun — hwn

®1) +pM(zn,yn) + p1)), |
Tn € (Aun)r’ chn - $n+1” < (1 + (1 + n)—l)H((Aun)r; (Aun—l»l)r)a
(3.2) Yn € (Bun)r llyn = Ynal S A+ (1 + n)_l)H((Bun)r, (Bun+1)r),

zn € (Ctn)r, |l2n = zn41ll < (1 + (1 +n)"YH((Cun)r, (Ctint1)r),
Wy € (Dun)r7 “wn — W1l £ (1 + (1 + n)—l)H((Dun)r, (Dun+1)7‘)

for all n > 0, where ¢t and p are positive parameters with ¢t < 1.

Remark 3.2. Algorithm 1 in [1] and Algorithm 3.1 in [6]-[9] are special cases of
Algorithm 3.1.

Theorem 3.1. Let g,h : H — H be Lipschitz continuous with constants m and [,
respectively, g be strongly monotone with constants o, and A,B,C,D : H — F,.(H)
be F,.-Lipschitz continuous with constants a, b, c,d, respectively. Let M : HxH — H
be Lipschitz continuous with respect to the first and second arguments with constants
71,0, respectively, and A be F.-relazed Lipschitz with respect to the first argument
of M with constant 5. Suppose that W : H x H — 2H satisfy for each z € H,
W(-,z): H— 2 is a mazimal monotone mapping and

(3'3) “JW(u,x)(Z) - JW(u,y)(z)” < l‘“w - y” forallu,z,y,z € H,

where p > 0 is a constant. Let k = 2v/1 — 2a + m2+-2ld+puc, j = ob—+/'1 — 2o + m?
>0, L=1+4+2s+n%a?~j2, T=14+5s—(1-k)j and S = k* — 2K. If there ezists
a constant p € (0,1)] satisfying

(3.4) k+pj<1,

and one of the following conditions

(3.5) L>0, T2+ 8L >0, |p— TL™Y < L™/T? + SL;
(3.6) L=0,T>0, p>—(21)718;

(3.7) L<0, |p-TLY>-L /T2 +SL,

then for each f € H, the generalized multivalued quasivariational inclusion for fuzzy
mappings (2.1) has a solution w € H, z € (Au),, y € (Bu)r, z € (Cu)r, w €
(Du), with gu — hw € dom(W (-, 2)) and the sequences {un tn>0, {Tn}n>0, {Yn}n>0,
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{2n}n>0, {wn}n>0, generated by Algorithm 3.1 converge strongly to u,z,y,z and w,
respectively.

Proof. Since g is Lipschitz continuous and strongly monotone with constants m and
a, respectively, we have

(3-8) llgun = gun—1 — (un — un_1)|l < V1-2a+ m2|up — unp_1]l-

Because A is F,-Lipschitz continuous with constant a and F,-relaxed Lipschitz with
respect to the first argument of M with constant s, and M is Lipschitz continuous
with respect to the first argument with constants 7, by (3.2), we conclude that
(3.9)
(1 = p)(un — un—1) + p(M(2n, yn) — M(;cn_l,yn))HQ
= (1= p)’[lun — un-1[* +2(1 = P)p(M (25, Yn) = M(Zn-1,Yn), tin — Un—1)
+P2“M(l'n7 yn) - M(xn—h yn)“2
< (1= p? 200~ p)ps)llun — up-1]?
+p2% (1 + n D) H2((Aun )y, (Atn_1)s)
< (1= p)* =201 = p)ps + P*nPa® (L + n™1)?)|lup — un—a|f?.

Using (3.2), (3.3), (3.8), (3.9), Lemma 2.1 and the Lipschitz continuity of M with
respect to the first and second arguments, we have
(3.10)
unt1 — unll < (1 = lun — un_1]| + tllun — un-1 — (gun — gun—1)ll
+t||hwp, — hwn—1]|
N Iw (. 20y (1 = p)gun — hwn + pM(Tn, yn) + pf)
—JIW( 2y (1 = p)gun_1 — hwn_1 + pM(Tn-1,yn-1) + pf)ll
+tll w2y (1 = p)gun—1 — hwn_1 + pM(Tn-1,Yn-1) + pf)
—Jw (. zn-) (1 = p)gun—1 — hwp_1 + pM(Tn—1,yn-1) + pf)|
< (1= flun = up-all + thgun — gun— — (un — un-1)l|
+t||hwn, — hwn-1]|
+t|(1 = p)(gun — gun-1) — (hwn — hwn_1)
+p(M (2, yn) — pM (@n-1,Yn-1)ll + tpllzn = 2n-1]|
< (1= t)llun — un-1]l + (2 = p)llgun — gn—1 — (un = un—1)|
+2t|| hwy, — hwn—1]|
+t(1 = p)(un — un-1) + p(M(Zn, yn) — PM (Tn—1,4n))
o M(Zn-1,Yn) — M(2n—1,Yn-1)|| +tpllzn — 2ol
<A —-t4+t2— p)VI = 2a+ m)|up — upr |l + 2t |wn — wn-1l]
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+t/(1 = p)2 = 2(1 = p)ps + pPn2a? (1 + n=1)2||un — un—1]|
+tpollyn — yn-1ll + tu(1 + n~ ) H((Cup)r, (Cup—1)r)
< (1 =t(1 = 0n)un — tn-1l,

where
0n = (2— p)V1— 20+ m2 + (2d + pc)(1 +n~1)
(3.11) +v/ (1 = p)2 = 2(1 — p)ps + p*n2a2(1 + n~1)2 4 pob(1 +n71)
= 0=k++/(1~p)? 201~ p)ps + p?n?a? + pj

as n — oo. It is easy to verify that (3.4) means that

0<1e/(1-p2-20-pps+pnPa2<l—k—-pje Lp>—2Tp< S.

Thus one of (3.5)-(3.7) yields that # < 1. Let Q € (6,1) be a fixed number. It
follows from (3.11) that there exists a positive integer P satisfying 6, < @ for all
n > P. In view of (3.10) and t € (0, 1], we easily conclude that {u,}n>0 is a Cauchy
sequence in H. Hence there exists v € H such that u, — u as n — co. From (3.2)
and Fr-Lipschitz continuity of A, B, C, D, we know that z, — x € H, y, — y € H,
zn—z€ H, w, > we€H as n — o0.

By virtue of the continuity of g, b, Jyy (. ;), and the Lipschitz continuity of M with
respect to the first and second arguments, respectively, by (3.1) we have

u=(1-thu+tlu—gu+hw+ Jy (1 - p)gu — hw + pM(z,y) + pf)],

which yields that
gu = hw + Jw( (1 — p)gu — hw + pM(z,y) + pf).

Note that

d(z, (Au),) = inf{||lz — p| : p € (Auw),} < |z — Zn + d(2n, (Au)r)

<z = zpfl + H((Aug)r, (Au),)) < llo - znll +allu — unl| — 0

as n — oo. That is, d(z, (Au),) = 0. Hence z € (Au), because (Au), € F.(H).
Similarly, we have y € (Bu),, z € (Cu),, w € (Du),. It follows from Lemma
3.1 that the generalized multivalued quasivariational inclusion for fuzzy mappings
(2.1) has a solution v € H, = € (Au), y € (Bu)r, z € (Cu)r, w € (Du), with
gu — hw € dom(W (-, 2)). This completes the proof. ‘ 0
Remark 3.3. Theorem 3.1 extends, improves and unifies Theorem 3.1 in [9] and
Theorem 3.6 in [10].

Theorem 3.2. Let g,h,A,B,C,D,M,W,k and S be as in Theorem 5.1. Suppose
that B is F,-strongly monotone with respect to the second arguments of M with
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constant q. Assume that
i =+v1-2¢+ 0202 — V1 - 2o+ m? >0,
L=n%?-j2T=s-(1-k)j
If there exists a positive constant p € (0,1] satisfying (3.4) and one of (8.5)-(3.7),
then for given f € H, the generalized multivalued quasivariational inclusion for
fuzzy mappings (2.1) has a solution w € H, x € (Au),, y € (Bu),, z € (Cu)y,
w € (Du), with gu — hw € dow(W(-,2)) and the sequences {Un}n>0, {Zn}n>0,

{yn}n>0; {zn}n>0, {wn}nz0 generated by Algorithm 3.1 converge strongly to u,,y, z
and w, respectively.

Proof. Because B is F,- Lipschitz continuous with constant b and Fr-strongly mono-
tone with respect to the second argument of M with constant ¢, and M is Lipschitz

continuous with respect to the second argument with constant o, we know that

”un — Up-1 — (M(xn—layn) - M(mﬂ—layn—l))||2

= nun - 'Ufn—lnz - 2<M($n—layn) - M(a:n—l)yn—l))un - un~1>
+I|M($n—17 y’n) - M(.’L’n,h y‘n—l)“2

<(1-2¢9+ 02 (1 +n Y2 |lun — un_1]-

(3.12)

By making use of the same arguments used for obtaining (3.9), we have

IIUTL — Up—1+ p(M(m’rHyn) - M(xn—lvyn))”
< VT= 205 & PR T P — tn

(3.13)

It follows from (3.2), (3.3), (3.9), (3.10) and Lemma 2.1 that
(3.14)
lunt1 = unll < (1 = )llun — un—all + t)lgun — gun—1 — (tn = un-1)|
+t||hwy, — hwp_1]|
+t(1 = p)(gun = gun-1) — (hwn — hwn1)
+p(M(&n, yn) = M(Zn-1,Yn-1))ll
Ftpllzn = zn-a|
< (1 - t)”“n - un—l“ + t(2 - p)”gun — gun-1 — (un - un-—l)”

+2t{|hwn — hwn_1||
+tllun — up—1 + p(M (T, yn) — M(Tn-1,9n))|l
tpllun — tn1 — (M(zn-1,9n) — M(@n 1,9n-1))]
+tp(l + n—1>H((Cun)ra {Cun_1)r)

<A —t+t2-p)V1-2a+m?)||uy — up_1]|
+2tl(1 + n_l)H((Dun)n (Dun—l)r)
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+t(y/1—2ps + p?n2a%(1 + n~1)2 + py/1 — 2¢ + 02b%(1 + n~1)2
+pe(l+n71)un — un—1
< (1= (1= 0n)t)lun — un—ll,

where

On = (2 p)V1—2a+m?+ (2ld + pc)(1 +n7 1) + /1 — 2ps + p?n2a2(1 + n~1)2
+pV1 —2¢+ p?b2(1 + n~1)2
— 0=k+pj+ /1~ 2ps + p*n2a?

as n — 0. Obviously,

0<levV1-2ps+pn2a2<1—k—pje Lp? —2pT < S.

The rest of the proof is similar to that of Theorem 3.1. This completes the proof. [

Remark 3.4. Theorem 3.2 is a generalization of Theorem 3.1 in [6] and Theorem
3.3 in 7], [8].

Theorem 3.3. Let g : H — H satisfy that I — g is Lipschitz continuous with
constant m, k =2m+2ld+ puc and j = ob—m > 0. Let h,A,B,C,D, M, W,T,L,S
be be as in Theorem 3.1. If there exists a constant p € (0,1] satisfying (3.4) and one
of (3.5)-(3.7), then for given f € H, the generalized multivalued quasivariational
inclusion for fuzzy mappings (2.1) has a solution uw € H, z € (Au),, y € (Bu)r,
z € (Cu)r, w € (Du), with gu — hw € dom(W (-,2)) and the sequences {un}n>0,
{Zn}n>0, {Un}n>0, {2n}nz0, {Wnln>0 generated by Algorithm 3.1 converge strongly

to u,x,y,z and w, respectively.
Proof. Since I — g is Lipschitz continuous with constant m, it follows that
(3.15) gt — gtin_1 — (e — 1) < llt — 1]
As in the proof of Theorem 3.1, by (3.15) we immediately infer that
ltnt1 = unll < (1 = B)llun = un-all + (2 = p)llgun — gun—1 — (un — un-1)ll
+ 2t||hwy, — hwp_1]|
+ (1 = p)(un — tn-1) + p(M(Zn, yn) — M(Zn-1,¥a))|l

+ tp”M(Z'n_l, yn) - M(-'L'n—la yn—l)” + t/‘”zn - Zn—l”
< (1~ (1= 6u))lun — un-1l),
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where
bn = (2~ p)m + (2ld + pe)(1 +n~ 1)

+ V(= p)2—2(1 - p)ps + p*n2a®(1 + n~1)2 + pab(1 +n 1)
— 0=k+/(1-p)2—2(1—p)ps + p*n*a® + pj

as n — oo. By a similar argument used in the proof of Theorem 3.1, the result
follows. This completes the proof. 0

The proof of the following result goes in a similar fashion as that of Theorems
3.2 and 3.3, so we omit the proof.

Theorem 3.4. Let g: H — H satisfy that [ —g is Lipschitz continuous with constant
m, k = 2m-+2ld+pe, and j = \/1 - 2q+ 02b2—m > 0. Leth, A, B,C,D,M,W, T, L,
S be be as in Theorem 3.2. If there exists a constant p € (0,1] satisfying (3.4) and
one of (3.5)-(3.7), then for given f € H, the generalized multivalued quasivariational
inclusion for fuzzy mappings (2.1) has a solution uw € H, z € (Au)y, y € (Bu)r,
z € (Cu)r, w € (Du), with gu — hw € dom(W (,2)) and the sequences {un}n>0,
{zn}n>0, {yn}tn>0, {2n}n>0, {wn}n>0 generated by Algorithm 3.1 converge strongly
to u,x,y, 2 and w, respectively.
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