PRE-CONVERGENCE OF p-STACKS ON TOPOLOGICAL SPACES

Won Keun Min

ABSTRACT. We introduce the notion of pre-convergence of p-stacks and characterize the pre-interior, pre-closure, separation axioms and pre-continuity on a topological space by using pre-convergence of p-stacks. We also introduce the notion of p-precompactness and investigate its properties in terms of pre-convergence of p-stacks.

1. Introduction

Mashhour et. al. [5] introduced the concepts of preopen sets and pre-continuity on a topological space and obtained many significant properties. Reilly and Vamanamurthy [12] introduced the concept of preirresolute function on a topological space and investigated some its properties. In [1, 2, 3, 10] the new separation axioms were defined by preopen sets. In [8], the author introduced the notion of pre-convergence of filters and characterized pre-continuity and pre-irresolute function in terms of pre-convergence of filters. In [4], Kent and the author introduced p-stacks which are more general than filters and showed some their properties.

In this paper, we introduce the notion of pre-convergence of p-stacks and characterize the pre-interior, pre-closure, separation axioms and pre-continuity on a topological space by using pre-convergence of p-stacks. We also introduce the notion of p-precompactness and investigate its properties in terms of pre-convergence of p-stacks.

Received by the editors October 20, 2006 and, in revised form, February 8, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 54A20, 54C08, 54D10.

Key words and phrases. p-stacks, pre-convergence of p-stacks, ultrapstacks, p-semicompact.

This work was supported by a grant from Research Institute for Basic Science at Kangwon National University.

2. Preleminaries

In the present paper we denote X and Y topological spaces. Let S be a subset of X. Then the closure (resp. interior) of S will be denoted by clS (resp. intS). A subset S of X is said to be preopen [5] if $S \subset int(cl(S))$. The complement of a preopen set is said to be preclosed. The family of all preopen sets in X will be denoted by PO(X). A function $f: X \to Y$ is said to be pre-continuous [5] (resp. preirresolute [7, 12]) if $f^{-1}(V) \in PO(X)$ for each open (resp. preopen) set V of Y. A subset P(x) of X is called a pre-neighborhood of a point $x \in X$ [9, 11] if there exists a preopen set S such that $x \in S \subset P(x)$.

Given a set X, a collection \mathbb{C} of subsets of X is called a stack if $A \in \mathbb{C}$ whenever $B \in \mathbb{C}$ and $B \subset A$. A stack \mathbb{H} on a set X is called a p-stack [1] if it satisfies the following condition:

(p) $A, B \in \mathbf{H}$ implies $A \cap B \neq \emptyset$.

Condition (p) is called the pairwise intersection property (PIP). A collection B of subsets of X with the PIP is called a p-stack base. For any collection B, we denote by $\langle \mathbf{B} \rangle = \{A \subset X : \text{there exists } B \in \mathbf{B} \text{ such that } B \subset A\}$ the stack generated by \mathbf{B} , and if $\{B\}$ is a p-stack base, then $\langle \{B\} \rangle$ is a p-stack. We will denote simply $\langle \{B\} \rangle = \langle B \rangle$. In case $x \in X$ and $B = \{x\}$, $\langle B \rangle$ is usually denoted by \dot{x} . Let pS(X) denote the collection of all p-stacks on X, partially ordered by inclusion. The maximal elements in pS(X) are called ultrapstacks [4]. It is obvious that every ultrafilter is an ultrapstack, and that every p-stack is contained in an ultrapstack. For a function $f: X \to Y$ and $\mathbf{H} \in pS(X)$, the image p-stack $f(\mathbf{H})$ in pS(Y) has p-stack base $\{f(H): H \in \mathbf{H}\}$. Likewise, if $\mathbf{G} \in pS(Y)$, $f^{-1}(\mathbf{G})$ denotes the p-stack on X generated by $\{f^{-1}(G): G \in \mathbf{G}\}$.

Definition 2.1 ([1, 2, 3, 10]). Let A be a subset in X.

- $(1) \ pint(A) = \bigcup \{U \in PO(X) : U \subset A\};$
- (2) $pcl(A) = \bigcap \{ F \subset X : A \subset F \text{ and } X F \in PO(X) \};$
- (3) X is pre- T_1 if for every two distinct points x and y in X, there exist two preopen sets U and V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$;
- (4) X is $pre-T_2$ if for every two distinct points x and y in X, there exist two disjoint preopen sets U and V such that $x \in U$ and $y \in V$;
- (5) X is pre-regular if for preclosed set H and $x \notin H$, there exist two disjoint preopen sets U and V such that $H \subset U$ and $x \in V$;

(6) X is precompact if each cover of X by preopen sets has a finite subcover.

Lemma 2.2 ([4]). For $\mathbf{H} \in pS(X)$, the following are equivalent;

- (1) **H** is an ultrapstack;
- (2) If $A \cap H \neq \emptyset$ for all $H \in \mathbf{H}$, then $A \in \mathbf{H}$;
- (3) $B \notin \mathbf{H}$ implies $X B \in \mathbf{H}$.

Theorem 2.3 ([4]). Let $f: X \to Y$ be a function and $\mathbf{H} \in pS(X)$. If \mathbf{H} is an ultrapstack, so is $f(\mathbf{H})$.

3. Main Results

Definition 3.1. Let $\mathbf{P}_x = \{V \subset X : V \text{ is a pre-neighborhood of } x\}$ for $x \in X$. Then we call the family \mathbf{P}_x the *pre-neighborhood stack* at x.

Definition 3.2. For $x \in X$ and $\mathbf{F} \in pS(X)$. A *p*-stack \mathbf{F} on X pre-converges to x if $\mathbf{P}_x \subset \mathbf{F}$.

From Definition 3.2, we get the following theorem.

Theorem 3.3. For $x \in X$, the following are valid:

- (1) \dot{x} pre-converges to x:
- (2) For \mathbf{F} , $\mathbf{G} \in pS(X)$ if \mathbf{F} pre-converges to x and $\mathbf{F} \subset \mathbf{G}$, then \mathbf{G} pre-converges to x:
- (3) If both \mathbf{F} and \mathbf{G} are p-stacks pre-converging to x, then $\mathbf{F} \cap \mathbf{G}$ pre-converges to x.

Theorem 3.4. Let A be a subset in X. Then $x \in pcl(A)$ for $x \in X$ if and only if there is $\mathbf{F} \in pS(X)$ such that $A \in \mathbf{F}$ and \mathbf{F} pre-converges to x.

Proof. Let x be an element in pcl(A); then $\mathbf{P}_x \cup \langle A \rangle = \langle \{U \cap V : U \in \mathbf{P}_x, V \in \langle A \rangle \} \rangle$ is a p-stack which pre-converges to x and contains A.

For the converse, let **F** be a *p*-stack pre-converging to x and $A \in \mathbf{F}$; then $\mathbf{P}_x \subset \mathbf{F}$, so it follows that $U \cap A \neq \emptyset$ for all $U \in \mathbf{P}_x$.

Theorem 3.5. Let A be a subset X. Then $x \in pint(A)$ for $x \in X$ if and only if for every p-stack \mathbf{F} pre-converging to x, $A \in \mathbf{F}$.

Proof. Let x be an element in pint(A) and let \mathbf{F} be a p-stack pre-converging to x; then there is a preopen subset U such that $x \in U \subset A$, so by definition of pre-convergence of p-stacks, we can say $A \in \mathbf{F}$.

Conversely, suppose that for every p-stack \mathbf{F} pre-converging to $x, A \in \mathbf{F}$. Since the pre-neighborhood stack \mathbf{P}_x pre-converges to x, by hypothesis $A \in \mathbf{P}_x$, so $x \in pint(A)$.

Now using pre-convergence of *p*-stacks, we characterize separation axioms defined by preopen sets on a topological space.

Theorem 3.6. The following are equivalent:

- (1) (X, μ) is pre- T_1 ;
- (2) $\cap \mathbf{P}_x = \{x\} \text{ for } x \in X;$
- (3) If \dot{x} pre-converges to y, then x = y.

Proof.

- $(1) \Rightarrow (2)$ It is obvious.
- $(2) \Rightarrow (3)$ Let \dot{x} pre-converge to y; then x is an element in $\cap \mathbf{P}_y$. Thus x = y.
- $(3) \Rightarrow (1)$ Suppose that X is not pre- T_1 . Then there are distinct elements x and y such that every preopen neighborhood of x contains y. Thus $\mathbf{P}_x \subset \dot{y}$ and \dot{y} pre-converges to x.

Theorem 3.7. X is pre- T_2 if and only if every pre-convergent p-stack \mathbf{F} on X pre-converges to exactly one point.

Proof. Suppose that X is pre- T_2 and a p-stack **F** pre-converges to x. For any $y \neq x$, there are disjoint preopen sets U(x) and U(y) containing x and y, respectively. Since **F** is a p-stack pre-converging to x, both U(x) and X - U(y) are elements of **F**. Thus **F** doesn't pre-converge to y.

Conversely suppose that X is not pre- T_2 . Then there must exist x, y such that $U(x) \cap U(y) \neq \emptyset$ for every preopen sets U(x) and U(y) of x and y, respectively. Let $\mathbf{F} = \mathbf{P}_x \cup \mathbf{P}_y$ be a p-stack; then \mathbf{F} is finer than \mathbf{P}_x and \mathbf{P}_y , so the p-stack \mathbf{F} pre-converges to both x and y.

Let $\mathbf{F} \in pS(X)$; then $\mathbf{B} = \{pcl(F) : F \in \mathbf{F}\}$ is a p-stack base on X. The p-stack generated by \mathbf{B} is denoted by $pcl(\mathbf{F})$ and the p-stack $pcl(\mathbf{F})$ is called the pre-closure p-stack of \mathbf{F} .

Theorem 3.8. The following are equivalent:

- (1) X is pre-regular;
- (2) For every x in X, $\mathbf{P}_x = pcl(\mathbf{P}_x)$;
- (3) If a p-stack \mathbf{F} pre-converges to x, then the pre-closure p-stack $pcl(\mathbf{F})$ pre-converges to x.

- *Proof.* (1) \Rightarrow (2) Let F be an element in \mathbf{P}_x ; then there exists a preopen neighborhood U(x) such that $U(x) \subset F$. By hypothesis, there is a preopen neighborhood W(x) of x such that $W(x) \subset pcl(W(x)) \subset U(x) \subset F$ so $F \in pcl(\mathbf{P}_x)$.
 - $(2) \Rightarrow (3)$ It is obvious.
- $(3) \Rightarrow (1)$ Let U be a preopen set containing $x \in X$; then from (3), it follows $U \in pcl(\mathbf{P}_x)$. Thus there is a preopen neighborhood V of x such that $V \subset pcl(V) \subset U$.

We know that a function $f: X \to Y$ is preirresolute if and only if for each x in X and each pre-neighborhood U of f(x), there is a pre-neighborhood V of x such that $f(V) \subset U$.

Now we get another characterization of preirresolute functions on topological spaces by using p-stacks.

Theorem 3.9. If $f: X \to Y$ is a function, then the following statements are equivalent:

- (1) f is preirresolute;
- (2) $\mathbf{P}_{f(x)} \subset f(\mathbf{P}_x)$, for all $x \in X$;
- (3) If a p-stack \mathbf{F} pre-converges to x, then the image p-stack $f(\mathbf{F})$ pre-converges to f(x).

Proof. (1) \Rightarrow (2) Let $V \in \mathbf{P}_{f(x)}$ in Y; then there exists a preopen neighborhood $U \in \mathbf{P}_x$ such that $f(U) \subset W \subset V$, thus $V \in f(\mathbf{P}_x)$.

- $(2) \Rightarrow (3)$ It is obvious.
- (3) \Rightarrow (1) If f is not preirresolute, then for some $x \in X$ there is a preopen neighborhood $V \in \mathbf{P}_{f(x)}$ such that for all preopen neighborhood $U \in \mathbf{P}_x$, f(U) is not included in V. For all $U \in \mathbf{P}_x$, we get a p-stack $\mathbf{G} = f(\mathbf{P}_x) \cup \langle Y V \rangle$ and also get a p-stack $\mathbf{F} = \mathbf{P}_x \cup \langle f^{-1}(Y V) \rangle$ which pre-converges to x. But since $f(\mathbf{F})$ is a p-stack which is finer than \mathbf{G} and $f^{-1}(Y V) \in \mathbf{G}$, $f(\mathbf{F})$ can not pre-converge to f(x).

Now we introduce the concept of p-precompactness and investigate its properties by using p-stacks.

Definition 3.10. A subset A of X is said to be p-precompact if every ultrapstack containing A pre-converges to a point in A. A space X is p-precompact if X is p-precompact.

Example 3.11. Let $X = \{a, b, c\}$ and let (X, τ) be a topological space. In case τ is the discrete topology, $\tau = PO(X)$. Let **H** be an ultrapstack containing a p-stack

F generated by $\{\{a,b\},\{b,c\},\{a,c\}\}\$; then it does not pre-converge to any point in X. Thus however X is finite, it is not p-precompact. In case $\tau = \{\emptyset, \{a\}, \{a,b\}, X\}$, $PO(X) = \{\emptyset, \{a\}, \{a,b\}, \{a,c\}, X\}$. The following pre-neighborhood stacks are obtained: $\mathbf{P}_{\tau}(a) = \{\{a\}, \{a,b\}, \{a,c\}, X\}, \mathbf{P}_{\tau}(b) = \{\{a,b\}, X\} \text{ and } \mathbf{P}_{\tau}(c) = \{\{a,c\}, X\}$. Since every ultrapstack pre-converges to a point in X, X is p-precompact.

Theorem 3.12. If X is p-precompact and $A \subset X$ is preclosed, then A is p-precompact.

Proof. Let **F** be an ultrapstack containing A; then from Definition 3.10, there is $x \in X$ such that **F** pre-converges to x. From Theorem 3.4, it follows $x \in pcl(A)$. \square

Theorem 3.13. Let a function $f: X \to Y$ be preirresolute. If A is a p-precompact set in X, so is f(A).

Proof. Let **H** be an ultrapstack containing f(A) and let **G** be an ultrapstack containing the p-stack base $\{f^{-1}(H): H \in \mathbf{H}\} \cup \langle A \rangle$; then **G** pre-converges to x for some $x \in A$, and $\mathbf{H} = f(\mathbf{G})$ pre-converges to f(x) by Theorem 2.3 and Theorem 3.9. Thus f(A) is p-precompact.

Theorem 3.14. X is p-precompact if and only if each preopen cover of X has a two-element subcover.

Proof. Suppose **H** is an ultrapstack in X such that it does not pre-converge to any point in X. Then for each $x \in X$, there is a preopen subset $U_x \in \mathbf{P}_x$ such that $U_x \notin \mathbf{H}$. By Lemma 2.2, $X - U_x \in \mathbf{H}$, for all $x \in X$. Thus $\mathbf{U} = \{U_x : x \in X\}$ is a preopen cover of X. But **U** has no a two-element subcover of X, for if $U, V \in \mathbf{U}$ and $X \subset U \cup V$, then $(X - U) \cap (X - V) = X - (U \cup V) = \emptyset$, contradicting the assumption that **H** is a p-stack.

Conversely, let **U** be a preopen cover of X with no two-element subcover of X. Then $\mathbf{B} = \{X - U : U \in \mathbf{U}\}$ is a p-stack base, and any ultrapstack containing **B** can not pre-converge to any point in X.

REFERENCES

- 1. A. Chattopadhyay: $Pre-T_0$ and $Pre-T_1$ topological spaces. J. Indian Acad. Math. 17(2) (1995), 156-159.
- S. N. El-Deeb, I. A. Hasanein, A. S. Mashhour & T. Noiri: On p-regular spaces. Bull. Math. de la Soc. Sci. Math. R. S. R. Tome 27(75) (1983), 311-315.

- A. Kar & P. Bhattacharyya: Some weak separation axioms. Bull. Cal. Math. Soc. 82 (1990), 415-422.
- D. C. Kent & W. K. Min: Neighborhood Spaces. Internat. J. Math. & Math. Sci. 32(7) (2002), 387-399.
- 5. A. S. Mashhour, M. E. Abd El-Monsef & S. N. El-Deeb: On precontinuous and weak precontinuous mappings. *Math. and Phys. Soc. Egypt* **53** (1982), 47-53.
- A. S. Mashhour, I. A. Hasanein & S. N. El-Deeb: A note on semi-continuity and precontinuity. *Indian J. pure appl. Math.* 13(10) (1982), 1119-1123.
- 7. _____ : α -continuous and α -open mappings. Acta Math. Hungar. 41(3) (1983), 213-218.
- 8. W. K. Min: Pre-Convergence of Filters and p- γ -continuity. Scientiae Mathematicae Japonicae **60**(1) (2004), 149-156.
- 9. G. B. Navalagi: Pre-neighborhoods. The Mathematicis Education 32(4) (1998), 201-206.
- 10. Paul & P. Bhattacharyya: p-nomal spaces. Soochow J. Math. 21(3) (1995), 273-289.
- 11. V. Popa: p-nomal spaces. Glasnik Math. 22(423) (1987), 157-161.
- 12. I. L. Reilly & M. K. Vamanamurthy: On α -continuity in topological spaces. *Acta Math. Hungar.* **45**(1-2) (1985), 27-32.

DEPARTMENT OF MATHEMATICS, KANGWON NATIONAL UNIVERSITY, CHUNCHEON, 200-701, KOREA

Email address: wkmin@cc.kangwon.ac.kr